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ABSTRACT In this paper, we apply a game theoretic approach to power allocation in full-duplex orthogonal
frequency division multiple access networks. Such networks exhibit a full-duplex base station, which
allocates the same radio resources to a pair of half-duplex user equipment: one on the uplink, and one
on the downlink. A theoretical doubling of the capacity is threatened by the interferences generated by
full-duplex operation: self-interference and intra-cell co-channel interference. In our work, we propose
three non-cooperative games aimed at tackling the intricate task of allocating power to scheduled pairs of
user equipment, with objectives varying from improving user equipment performance to reducing power
expenditure. The games have two sets of players: the users on the uplink, and the base station on the downlink.
We use a special class of games, known as super-modular games, to draft different player utilities with
different objectives. Via a set of exhaustive simulations, we assess the significance of power allocation in
full-duplex wireless networks and determine its gains and limitations.

INDEX TERMS Game theory, full-duplex, scheduling, power allocation.

I. INTRODUCTION
As recently as 2010, full-duplex (FD) wireless technologies
were still perceived to be impossible. The signal transmitted
from a wireless device would overwhelm the signal being
received on the same radio resource, thus masking it com-
pletely [1]. Nonetheless, the introduction of self-interference
cancellation (SIC) techniques thereafter made full-duplex
communications possible. The main challenge that faces
extracting gains from full-duplex technologies lies within the
interferences that the full-duplex network creates itself. In the
full-duplex orthogonal frequency division multiple access
(FD-OFDMA) network scenario we envision, a full-duplex
base station (BS) will concurrently communicate with a pair
of half-duplex (HD) user equipment (UE). This keeps the
complexities of implementing full-duplex communications
away from the UEs. As such, on a certain radio resource,
one UE will be transmitting, its paired downlink UE will
be receiving, and the BS being the full-duplex node would
be simultaneously transmitting and receiving. This network
would suffer from two major added types of interference:
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self-interference at the full-duplex node, and intra-cell co-
channel interference at the downlink UEs.

The transmitted signal at a BS with full-duplex capabilities
would overwhelm the signal being received from a UE on
the uplink, which is typically multiple times weaker. This is
known as self-interference, a phenomenon that degrades the
performance of uplink UEs in full-duplex wireless networks.
SIC techniques, a set of analog and digital signal interference
cancellation technologies [2], make full-duplex communica-
tions feasible because of their effectiveness in battling this
type of interference.

Another interference generated as a ramification of
full-duplex communications is intra-cell co-channel interfer-
ence. As pairs of uplink-downlink UEs share the same radio
resources, the signal transmitted from an uplink UE will
interfere on that being received by its downlink pair. This
degrades the performance of the latter. As such, scheduling
on the uplink and the downlink should be coordinated in order
to pair between the uplink-downlink UEs which interfere the
least upon each other.

In our work, we have two main objectives. First, to use
game theory to propose a distributed approach to power
allocation in full-duplex wireless networks. And second,
to use power allocation to study, and improve, the gains
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achievable from full-duplex wireless communications.
We start by introducing both greedy and fair scheduling
algorithms for FD-OFDMA wireless networks. Afterwards,
we put forward multiple game theory based proposals for
power allocation. These games have different objectives:
maximizing UE SINR, reducing network interferences,
increasing energy efficiency and others. Because of the intri-
cate relation between uplink and downlink transmissions in a
full-duplex wireless network, it is impossible for one utility
function to encompass all these objectives, and at the same
time be impervious to different network scenarios. As a result,
we put forward a game theoretic framework composed of
three games which have different objectives and are suitable
for different network scenarios. For each game, we prove
that Nash equilibriums (NEs) exist, and that a repeated best
response algorithm can be used to reach them. We perform
thorough numerical simulations to assess the performance of
our approaches in various interference conditions. The results
show that power allocation has the ability to improve UE
performance and save on expenditure, and that the pertinence
of each our proposals depends on the scenario in question.

The remainder of this paper is structured as follows.
Section II has the related works in the state-of-the-art and
the contributions of this paper. Section III has the network
model. The radio model used, the channel state information
considered, as well as the UE traffic model are discussed in
this section. In section IV, we present the scheduling and
power allocation framework we used. Our greedy and fair
scheduling proposals can be seen in section V, and an intro-
duction into using non-cooperative game theory for power
allocation is given in section VI. We propose three different
games. The first, the greedy game, is presented in section VII.
The second, the interference aware game, is presented is
section VIII. And finally, the third, the energy efficient game,
is put forward in section IX. Section X has the detailed
simulation results. In it we go over the impact of scheduling
and power allocation on UE throughput values and waiting
delays, as well as themanner inwhich our proposed game the-
ory based algorithms allocate power on the radio resources.
Finally, this paper is concluded with section XI.

II. RELATED WORKS AND CONTRIBUTIONS
In this section, we look at the related works in the state-of-
the-art. Research into full-duplex wireless communications
can be classified into two major blocks. The first, constituted
mainly of early works in the domain, focuses on verifying
the possible gains of full-duplex wireless communications,
whether through simulations or real-life modules. The second
block thereafter focuses on devising scheduling and power
allocation algorithms for full-duplex wireless networks.

The works in [3]–[6] revolve around assessing the gains of
full-duplex wireless networks. Their authors study the lim-
itations and obstacles of implementing full-duplex wireless
communications. In one of the earliest works on in-band
full-duplex for wireless networks, the authors in [3] sur-
veyed a range of SIC techniques and touched on the main

challenges facing full-duplex wireless networks. The authors
in [4] proposed a full-duplex module with which they sim-
ulated two types of full-duplex networks: one where only
the BS is full-duplex capable, and the other where both
the UEs and the BS are full-duplex capable. Consequently,
they assert the gains achievable from full-duplex communi-
cations. In [5], different scenarios and implementations of
full-duplex networks are discussed. Mainly, four possible
full-duplex wireless applications are presented. They include
MIMO networks, cooperative networks, OFDMA networks,
and Het-Nets. Again, the authors use resource management
problems for the purpose of validating wireless full-duplex
communications. With a more practical approach, the authors
in [6] introduce a realistic model of a compact full-duplex
receiver. With this model at hand, the authors demonstrate
via numerical evaluations the capacity gains of full-duplex
wireless networks and bring insights onto the impact of SIC
on the performance of these networks. Finally, the articles
in [7]–[9] refocus on the SIC techniques as the progress
of cancellation technologies keeps growing the prospects of
full-duplex wireless communications.

The second major block in the state-of-the-art tackles
the tasks of scheduling and power allocation. The articles
in [10]–[16] all focus on greedy scheduling algorithms based
on Sum-Rate maximization coupled with optimal power allo-
cation mechanisms. In some, heuristic algorithms were pro-
posed to replace the mathematically intractable problem of
jointly allocating radio resources and power. Probably the
closest in the state-of-the-art to our objective in this paper, are
the articles in [17] and [18]. The authors in [17] suggest that a
game theoretic approach could be used for power allocation in
full-duplex wireless networks. Their article surveys possible
applications in relation to scheduling and power allocation in
different full-duplex network scenarios. In [18], the authors
use a game theoretic approach for resource allocation in
full-duplex networks. While they implement a water filling
algorithm for power control, their game theoretic approach
focuses on greedy resource allocation with the purpose of
sum-rate maximization.

In this paper, we propose a game theoretic framework
for power allocation in FD-OFDMA wireless networks.
We implement both fair and greedy resource allocation
schemes in contrast to the majority of the state-of-the-art, and
we seek via these scheduling algorithms to validate three dif-
ferent game proposals. In our work, we use non-cooperative
game theory and show that each of our proposals converges
to an NE via a repeated best response algorithm. Our system
model uses a non-full buffer traffic model, unlike the vast
majority of the state-of-the-art [10]–[18]. Dynamic traffic,
like video streaming, would make upwards of 78 % of the
mobile traffic worldwide by the year 2021 [19], signaling
thus an importance in studying the implications of such traf-
fic models. Furthermore, by using a non-cooperative game
theoretic approach to power allocation, and by applying sep-
arate utilities for each set of players, our algorithms are
significantly less complex than the mixed integer non-linear
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problems proposed in the articles mentioned above. This
makes them easier to implement in real-life scenarios.
We highlight our main contributions as follows:

(a) We propose multiple games for power allocation in
full-duplex wireless networks. The games have different
objectives and focus on maximizing different aspects of
network performances.

(b) We implement queue-awareness into the scheduling and
power allocation algorithms. This is avoided in the vast
majority of the state-of-the-art on full-duplex wireless
networks. We added buffer constraints to the optimiza-
tion problems and counted for the fact that users might
leave then rejoin the network.

(c) We propose a distributed approach to power allocation.
This is also rather rare with respect to the state-of-the-
art, where the majority of the papers implement central-
ized optimization algorithms.

(d) We studied the efficiency of power allocation in a
full-duplex setting. While multiple papers introduce
power allocation algorithms alongside their scheduling
proposals, almost none study the efficiency or con-
sequences of allocating power in full-duplex wireless
networks.

(e) Via a set of exhaustive simulations, we compare and con-
trast between our proposals, highlighting their advan-
tages, as well as their shortcomings.

III. NETWORK MODEL
A. RADIO MODEL
Our work is done with the assumption of a single-cell
FD-OFDMA wireless network. This network includes a
full-duplex BS and half-duplex UEs. The UEs in the network
belong to one of two virtual sets: an uplink UE set I or a
downlink UE set D. The scheduler pairs between uplink and
downlink UEs on every resource block (RB) k of the set of
available RBs K. The network model is shown in Fig. 1.

An OFDMA structure is used to operate the physical layer.
The radio resources are divided into time-frequency RBs.
In the time domain, an RB is comprised of an integer number
of OFDM symbols. In the frequency domain, an RB has
adjacent narrow-band subcarriers and experiences flat fading.
The scheduling decision is taken for every Transmission Time
Interval (TTI). At the start of every TTI, the scheduler has K
RBs to allocate. The duration of a TTI is set to be less than
the channel coherence time. As a result, UE radio conditions
will vary from one RB to another but will remain constant
over a select TTI. Themodulation and coding scheme (MCS),
that is assigned to a UE on a given RB, depends on its radio
conditions. For performance evaluation, we consider LTE
specifications, with an RB being composed of 12 subcarriers
and 7 OFDM symbols [20].

We use an adapted formula to calculate the UE SINR val-
ues. This formula takes the co-channel interference between
a UE pair and the self-interference cancellation performed by
the BS into account. The SINR of uplink UE i observed on

FIGURE 1. Network model and interferences.

RB k , whilst paired with downlink UE j, is expressed as:

Suj (i, k) =
Pikhik

N0k +
P0k
SIC

, (1)

where on RB k , Pik is the power emitted by UE i, hik is the
channel gain between uplink UE i and the BS, and P0k is
the power emitted on the downlink by the BS on RB k . SIC
denotes the self-interference cancellation performed by the
BS, and thus P0k

SIC is the residual self-interference. Finally, N0k
is the noise power at the BS on RB k . Furthermore, the SINR
observed by downlink UE j alloted RB k , and paired with
uplink UE i, is expressed as:

Sdi (j, k) =
P0kh0k

Njk + Pikhij,k
, (2)

where h0k is the channel gain between the downlink UE
attributed RB k and the BS, and hij,k is the channel gain
between downlink UE j attributed RB k and interfering UE
i, matched on that same RB. As such, Pikhij,k is the intra-cell
co-channel interference affecting downlink UE j. Finally, Njk
is the noise power at downlink UE j allocated RB k .

B. CHANNEL STATE INFORMATION
In order to achieve reliable wireless communications, it is
necessary for the scheduler to have knowledge on all of the
channels in the network. Full-duplex communications pose
an additional problem in this context. In full-duplex networks,
information on the channels in between the pairs of UEs is
required. In our work, we mathematically model the inter-UE
channel as follows:

hij,k = GtGrLpAsAf (3)

Gt is the transmitter antenna gain. Gr is the receiver antenna
gain. Lp represents the path loss. As represents the shadowing
effects and Af represents the fast fading effect. In this work,
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FIGURE 2. Traffic model: UE pair i -j .

the scheduler is assumed to have perfect channel state infor-
mation. The impact of imperfect channel state information
on full-duplex network performances has been investigated
in our previous work in [21]. In it, we show that the lack
of inter-UE channel state information could significantly
decrease the full-duplex gains, and that partial knowledge of
the channels would be enough to sustain these gains.

C. TRAFFIC MODEL
Our scheduling is queue-aware (Fig. 2). Each UE has a prede-
fined throughput demand which determines the rate at which
the UE will transmit or receive. A downlink UE has a queue
at the BS, denoted Qdj , that it wants to receive. An uplink UE
has a queue of bits it wants to transmit to the BS, denotedQui .
UE queues are updated each TTI. They are filled according to
a Poisson process with an average arrival rate λ equal to the
throughput demand. Once the scheduling is done for a certain
TTI, the number of bits each UE can transmit or receive
is calculated, and the UE queues are deducted accordingly.
The traffic is packeted into small units known as transport
blocks. The modulation and coding scheme (MCS) that can
be assigned to a UE is based on its SINR. Following the MCS
used and the number of RBs allocated for a UE, its transport
block size is determined for the TTI. Any bits remaining in a
UE queue at the end of a TTI are carried on to the next one.

D. PERFORMANCE MODEL
The mapping between a UE’s SINR and the number of bits
it can transmit/receive is done following an MCS. Using
LTE-like configurations, we set 15 channel quality indica-
tor (CQI) values. The CQI values are used to identify the cod-
ing rates selected between 1/8 and 4/5, and the modulations
chosen among 4-QAM, 16-QAM and 64-QAM. Figure 3
shows the mapping between the UE SINR values and the
assigned CQI values.

Furthermore, Table 1 shows the relationship between the
CQI level and the MCS schemes used. Based on the MCS
used, the number of bits each UE can transmit or receive on
the resources allocated to it is recorded. At the end of the

FIGURE 3. The CQI as a function of UE SINR.

TABLE 1. Modulation and coding scheme.

simulation, the UE throughput is calculated as the number
of bits the UE has transmitted divided by the simulation dura-
tion. Finally, the average UEwaiting delay is calculated using
Little’s formula [22] as the average queue length divided by
the packet arrival rate.

IV. PROBLEM SOLVING FRAMEWORK
In this paper, we propose three games for power allocation
in FD-OFDMA wireless networks. First, the scheduler will
allocate the resources to pairs of uplink-downlink UEs with
the assumption of constant powers. Afterwards, our game
theoretic proposals are used to calculate the transmit power
on every allocated RB.

Given the UE SINR values and queues, and with constant
power values, we compute the optimal resource allocation
matrix z∗ijk . The games for power allocation use this matrix as
input and compute the power levels on the RBs. Afterwards,
the scheduler recalculates the UE SINR values. The number
of bits an uplink UE can transmit (T uijk ), or a downlink UE can
receive (T dijk ), is calculated. The UE queues are then updated

174016 VOLUME 7, 2019



H. Fawaz et al.: Game Theoretic Framework for Power Allocation in Full-Duplex Wireless Networks

FIGURE 4. Problem solving framework for scheduling and power
allocation.

depending on the resources each UE was allocated. At the
beginning of the next TTI, and after the arrival of new bits,
the UE demands Dui and D

d
j are updated.

V. SCHEDULING IN FD-OFDMA WIRELESS NETWORKS
As indicated in the framework, power allocation is done for
scheduled pairs of UEs. In this section, we present both
greedy and fair algorithms for scheduling in full-duplex wire-
less networks.

A. OPTIMAL FULL-DUPLEX MAX SINR
The objective of this algorithm is to allocate the RBs to the
UE pairs with the highest sum of SINR values. The optimal
formulation is illustrated below. (Pt1):

Maximize
∑
k∈K

∑
i∈I

∑
j∈D

zijk (Suj (i, k)+ S
d
i (j, k)), (4a)

subject to
∑
i∈I

∑
j∈D

zijk ≤ 1, ∀k ∈ K, (4b)

∑
k∈K

∑
j∈D

zijkT uijk ≤ D
u
i , ∀i ∈ I, (4c)

∑
k∈K

∑
i∈I

zijkT dijk ≤ D
d
j , ∀j ∈ D, (4d)

zijk ∈ {0, 1}, ∀i ∈ I, ∀j ∈ D,∀k ∈ K. (4e)

The resource assignment variable for the UE pairs denoted
zijk , is defined ∀ k ∈ K, ∀ i ∈ U , ∀ j ∈ D. It is equal
to one if uplink UE i is paired with downlink UE j on
RB k , and zero otherwise. Suj (i, k) and Sdi (j, k) are the
SINR values for the uplink and downlink UEs of the pair,
respectively.
T uijk represents the number of bits uplink UE i can transmit

on RB k while paired with downlink UE j. Similarly, T dijk
represents the number of bits UE j can receive on RB k in this
scenario. These factors dependmainly on the radio conditions

of the UEs. The demand of UE i, Dui , is the number of bits in
its queue. Likewise, Ddj is the demand of UE j.

Equation (4a) has the objective of our optimization prob-
lem which aims to select the pairs with the highest sum-SINR
values. According to (4b), each RB should be allocated to
either one or no pair. Equations (4c) and (4d) are the buffer
constraints. They insure that a UE is allocated at maximum a
number of resources sufficient to transmit or receive its queue
and nothing more. Since our model is queue-aware, these
constraints guarantee that the network resources are allocated
efficiently.

B. OPTIMAL FULL-DUPLEX PROPORTIONAL FAIR
We aim to maximize the network’s total throughput while at
the same time ensuring a minimum level of fairness among
the UEs. To this end, we propose a full-duplex Proportional
Fair algorithm, which allocates RBs to the pairs of UEs with
the highest sum of priorities. The priority of a UE is a function
of its current and historic radio conditions, represented by the
number of bits a UE can transmit, or receive, on the current
RB vs. the number of bits it has already transmitted. The
priority for a downlink UE j, paired with an uplink UE i on
RB k , for example, is defined as:

ρdi (j, k) =
T dijk
Tj
, (5)

where Tj is the number of bits UE j has received over a certain
time window. The optimization problem for full-duplex Pro-
portional Fair is presented in (Pt2), where the objective func-
tion is to maximize the sum of priorities i.e., select the pairs
with the highest priorities. The constraints and assumptions
from the previous problem remain the same.
(Pt2):

Maximize
∑
k∈K

∑
i∈I

∑
j∈D

zijk (ρuj (i, k)+ ρ
d
i (j, k)), (6a)

subject to
∑
i∈I

∑
j∈D

zijk ≤ 1, ∀k ∈ K, (6b)

∑
k∈K

∑
j∈D

zijkT uijk ≤ D
u
i , ∀i ∈ I, (6c)

∑
k∈K

∑
i∈I

zijkT dijk ≤ D
d
j , ∀j ∈ D, (6d)

zijk ∈ {0, 1}, ∀i ∈ I, ∀j ∈ D, ∀k ∈ K. (6e)

C. HEURISTIC SCHEDULING
Our optimal formulations belong to the category of integer
linear programming. While they can be efficiently solved
using classical approaches such as branch and bound, they
might still becomemathematically intractable for a high num-
ber of variables. As such, we present a heuristic alternative
(Algorithm 1) to the scheduling problems presented above.
This algorithm allocates each RB to a pair of UEs in turn
based on the sum of utilities F , where F is either the UE
SINR or the UE priority. The matrix pu0 has the initial transmit
power of every uplink UE on every RB it was allocated.
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pd0 has the initial BS transmit power on all the RBs. Follow-
ing the power allocation task, detailed later on in our game
theoretic propositions, a queue update function ‘‘Update(x)’’
is called (Algorithm 2). This function deducts the number of
transmitted/received bits from the corresponding UE queues.
If a UE has emptied its queue, it is removed from the next
scheduling iteration.

Algorithm 1 Heuristic Scheduling
1: Input: UE radio conditions, channel states, initial power

settings pu0 and p
d
0

2: For Each RB k = 1, . . .,K
3: Select a UE pair (i*, j*) such as
4: (i*, j*) = argmax

i∈I,j∈D
(Fuj (i, k)+ F

d
i (j, k)

5: Allocate RB k to pair (i*, j*)
6: End For
7: Allocate power following our proposals
8: For Every UE pair (i, j) Allocated an RB
9: Update(i), Update(j)

10: End For

Algorithm 2 Queue Update Function
1: Update (x)
2: If x ∈ I
3: Qux ← Qux − T

u
xjk

4: If Qux == 0
5: I ← I − {x}
6: End If
7: End If
8: If x ∈ D
9: Qdx ← Qdx − T

d
ixk

10: If Qdx == 0
11: D← D − {x}
12: End If
13: End If

VI. NON-COOPERATIVE GAMES FOR POWER
ALLOCATION
In our work, we use non-cooperative game theory to allocate
power on the RBs. The latter models interactions between
players competing for a common resource. It does not neces-
sitate a central authority or any added signaling between
the players of the game. Following the SINR formulas for
uplink (1) and downlink (2) UEs, an increase in the power
of an uplink UE will increase its SINR, but at the same time
cause added interference on its paired downlink UE. Vice-
versa, an increase in the transmit power at the BS, would
increase the SINR of the receiving downlink UE, but cause
added interference on the paired uplinkUE.UEs on the uplink
and the BS on the downlink, i.e., the decision makers, are
playing for contradicting objectives. Hence, non-cooperative
game theory is well adapted to power allocation in full-duplex
wireless networks.

A. GAME FORMULATION
We define a set of multi-player games G between the BS
(coined player 0) and the |I| uplink UEs. In particular,
on every allocated RB k , uplink UE i will compete with the
BS. The formulation of such a non-cooperative game G =〈
M , S0 ×

∏
i Si,U

〉
can be described as follows:

• A finite set of players M = (BS,UE i) are paired on
the same RB k . In fact, on each allocated RB k , a two-
players game is engaged between the BS and uplink UE
i matched on RB k .

• The action of a given player is the amount of power
allocated on RB k , the strategy chosen by the BS is then
P0 = (P01, . . . ,P0|K|) and the strategy chosen by any
uplink UE i is P i = (Pi1, . . . ,Pi|K|). A strategy profile
P = (P0,P1, . . . ,P|I|) specifies the strategies of all
players.

• For the BS, the space of pure strategies is S0 given by
what follows:

S0 = {P0 ∈ R|K|, such as
∑
k∈K

P0k ≤ pmax0 and

P0k ≥ pmin0 ,∀k ∈ K}

• For each uplink UE i, the space of pure strategies is Si
given by what follows:

Si = {P i ∈ R|K|, such as
∑
k∈K

Pik ≤ pmaxi and

Pik ≥ pmini ,∀k ∈ Ki
}

Ki is the set of resources allocated to UE i and S = S0×
S1 × . . .× S|I| is the set of all strategies.

• A set of utility functions U = (U0,Ui∈I ) that quantify
players’ profit for a given strategy profile.

Note that an uplink player i will not transmit on an RB it was
not allocated.

B. BEST RESPONSE
In non-cooperative game theory, a rational solution is one
where all competing players adhere to an NE [23]. An NE is a
profile of strategies in which no player will take advantage of
the others by deviating its strategy unilaterally. Thus, the pri-
mary challenge in non-cooperative game theory is to propose
algorithms capable of reaching such an equilibrium. The
simplest of these algorithms are the repeated best response
dynamics. Following these dynamics, each player selects the
best, and locally optimal, response to other players’ strate-
gies, until the algorithm converges.

VII. THE GREEDY GAME
We define the greedy game Gg. The objective of this game is
to maximize UE SINR values. Both UEs on the uplink and
the BS on the downlink will individually aim to increase the
UE SINR values. Let j(i, k) be a reference to downlink UE j
paired with uplink UE i on RB k as a result of scheduling. For
simplicity, in the remainder of this paper we use j = j(i, k).
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The utility of any uplink UE i ∈ I only encompasses its
own SINR. It is formulated as follows:

Ug
i =

∑
k∈Ki

log(
Pikhik

N0k +
P0k
SIC

), (7)

where Ki is the set of RBs scheduled to UE i. The utility of
the BS encompasses the SINR of both uplink and downlink
UEs:

Ug
0 =

∑
k∈K

(log(
Pikhik

N0k +
P0k
SIC

)+ log(
P0kh0k

Njk + Pikhij,k
)) (8)

For any uplink UE i, Ug
i is concave in Pik (logarithmic

function) and continuous in P0k , ∀k ∈ K. For the BS, Ug
0

is concave in P0k since

∂2Ug
0

∂P20k
= −

SIC · N0k × (SIC · N0k + 2P0k )

P20k × (N0k · SIC + P0k )2
< 0, (9)

and continuous in Pik , ∀ k ∈ K. Hence, as all strategy spaces
are compact, an NE exists for this game.

A. COMPUTING A NASH EQUILIBRIUM
As the utility functions are strictly concave, the NE is the
solution of the following two optimization problems:

max
Pγ

Ug
γ (Pγ ,P−γ ), (10a)

subject to
∑
k∈K

Pγ k ≤ pmaxγ , (10b)

Pγ k ≥ pminγ , ∀k ∈ K. (10c)

where pmaxγ (resp. pminγ ) is the maximal (resp. minimal) power
limit on the uplink for γ ∈ I and on the downlink for γ = 0.

As the optimization problems in (10) are nonlinear and
convex, the Karush-Kuhn-Tucker (KKT) conditions are suf-
ficient to determine the optimal case (i.e. the NE) [24]. The
KKT conditions associated with Pik ,∀k ∈ Ki for uplink UE
i ∈ I give what follows:

1
P∗ik
− µ = 0, ∀k ∈ Ki, (11a)

µ× (pmaxi −

∑
k∈Ki

P∗ik ) = 0, (11b)

P∗ik ≥ p
min
i , ∀k ∈ Ki, (11c)∑

k∈Ki

P∗ik ≤ p
max
i , (11d)

µ ≥ 0, (11e)

where µ is the Lagrange multiplier associated with the con-
straint (10b). We deduce from (11a) that µ cannot be null
and hence all P∗ik are equal. Furthermore, according to (11b),∑

k∈Ki P∗ik = pmaxi and finally P∗ik = max(pmini ,
pmaxi
Ki ) if RB

k is allocated to UE i and 0 otherwise.
The KKT conditions associated with P0k ,∀k ∈ K for the

BS give what follows:

1
P∗0k
−

1
N0k · SIC + P∗0k

− µ+ αk = 0, ∀k ∈ K, (12a)

µ× (pmax0 −

∑
k∈K

P∗0k ) = 0 (12b)

αk × (pmin0 − P
∗

0k ) = 0, ∀k ∈ K (12c)

P∗0k ≥ p
min
0 , ∀k ∈ K, (12d)∑

k∈K
P∗0k ≤ p

max
0 , (12e)

αk ≥ 0, ∀k ∈ K, (12f)

µ ≥ 0, (12g)

where µ and αk , ∀k ∈ K are the Lagrange multiplier asso-
ciated with the constraints (10b) and (10c) respectively. We
deduce from (12a) that µ cannot be null and therefore the BS
will allocate greedily all available power as∑

k∈K
P∗0k = pmax0 (13)

Furthermore, we need to distinguish between two caseswhere
αk , ∀k ∈ K are either null or not.
1) If αk 6= 0, P∗0k = pmin0 , ∀k ∈ K according to (12c).

Further, in conjunction with (13), maximal and minimal
thresholds should verify

pmax0
K = pmin0 .

2) If αk = 0,∀k ∈ K, we need to solve the follow-
ing second order equation: ak

P∗0k×(ak+P
∗

0k )
= µ, ∀k ∈ K,

where ak = N0k · SIC which gives a single realistic

solution (positive power value) P∗0k =
ak ·(

√
1+ 4

akµ
−1)

2 .
As the value of power levels is still dependent on the
Lagrangian variable µ (the ak are constant and known),
we have recourse to (13) to obtain it and compute the
numerical values of P∗0k ,∀k ∈ K accordingly.

B. BEST RESPONSE ALGORITHM
A best response algorithm, illustrated in Algorithm 3, is used
in this case to reach an NE. After the resources are allocated,
the uplink UEs and the BS take turn maximizing their utilities
until the power values on the RBs no longer change. The
resulting power allocation scheme is used in performance
assessments. pun and p

d
n are matrices containing all the power

values on the RBs on the uplink and the downlink, respec-
tively during iteration n.

VIII. THE INTERFERENCE AWARE GAME
We define the interference aware collaborative game Gc.
Our objective in this game is for power allocation to be
interference aware. Since the game is non-cooperative, it is
necessary that each player is aware of the interferences they
generate. If these interferences are not accounted for in the
utilities, each player will seek to maximize its own gains
independently, and consequently, increase its transmit power.
This would generate maximum interference in the network
and could inadvertently degrade UE performance. The utility
of every uplink UE i is thereafter written as:

U c
i =

∑
k∈Ki

log(
Pikhik

N0k +
P0k
SIC + Pikhij,k

). (14)
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Algorithm 3 Scheduling and Power Allocation Algorithm for
the Greedy Game
1: Requires:Maximum tolerance ε ≥ 0.
2: Input: UE radio conditions, channel states, initial power

settings pu0 and p
d
0

3: For TTI t = 1, . . . ,T
4: Step 1: Scheduling
5: RBs are allocated following (Pt1) or (P

t
2)

6: Step 2: Power Allocation
7: Repeat:
8: Solve (10) on the uplink ∀ i ∈ I
9: Update pun
10: Solve (10) on the downlink for the BS
11: Update pdn
12: δd = ‖pdn − p

d
n−1‖, δ

u
= ‖pun − p

u
n−1‖

13: n← n+ 1
14: Until δd ≤ ε and δu ≤ ε
15: Step 3: Update UE Queues
16: End For

As for the BS:

U c
0 =

∑
k∈K

log(
P0kh0k

Njk + Pikhij,k +
P0k
SIC

). (15)

The SINR for the UEs, on the uplink and on the downlink,
are thus inherently included. Additionally, the co-channel
interference, which degrades the performance of downlink
UEs, is now also affecting the utility of uplink UEs. The self-
interference, which degrades the performance of uplink UEs,
is now also affecting the utilities relating to downlink UEs.
As such, we can seek to improve UE performance, while at
the same time account for the resulting interferences. Via our
simulations, we show that our proposed utilities converge to
an efficient NE which improves UE performance.

A. A SUPER-MODULAR GAME
It is not always guaranteed that a best response algorithm
converges. This game is in fact part of a special class of games
known as super-modular. In such games, a best response
algorithm permits achieving NEs. In what follows, we give a
definition of super-modular games and prove that our power
allocation game belongs to this class. According to [25], any
game G is super-modular if for any player γ ∈ M :

1) The strategy space Sγ is a compact sub-lattice of R|K|;
2) The objective function is super-modular, that is ∂2U0

∂P0∂Pi
≥

0 and ∂2Ui
∂Pi∂P0

≥ 0 ∀i ∈ I, ∀P ∈ S, and ∀k ∈ K.

In [25], [26], proof is given for the following two results in a
super-modular game:

• If each player γ initially uses either its lowest or largest
policy in Sγ , then a best response algorithm will con-
verge monotonically towards an NE.

• Starting with a feasible policy, then the sequence of best
responses will converge to an NE: in a super-modular

game, it monotonically increases in all components in
the case of maximization.

Proposition 1: Game Gc
〈
M , S0 ×

∏
i Si,U

c
〉
is a super-

modular game.
Proof: To prove the super-modularity of our game,

we need to verify the conditions mentioned above. First,
the strategy space Sγ is evidently a compact convex set of
R|K|. Hence, it suffices to verify the super-modularity of
the objective function U c

γ of any player γ as there are no
constraint policies for Gc. For any uplink UE i, we have:

∂2 U c
i

∂Pik∂P0k
=

hij,k
SIC

(N0k+
P0k
SIC +Pikhij,k )

2
≥ 0, ∀i∈I, ∀k ∈K.

(16)

And for the BS, we have what follows:

∂2 U c
0

∂P0k∂Pik
=

hij,k
SIC

(Njk+
P0k
SIC +Pikhij,k )

2
≥0, ∀i∈I, ∀k ∈K.

(17)

B. COMPUTING A NASH EQUILIBRIUM
As we proved that our game is super-modular game,
we implement a best response algorithm to reach its pure NE.
At the convergence of the best response algorithm, an NE is
the solution of the following optimization problems:

max
Pγ

U c
γ (Pγ ,P−γ ) (18a)

subject to
∑
k∈K

Pγ k ≤ pmaxγ , (18b)

Pγ k ≥ pminγ , ∀k ∈ K. (18c)

where pmaxγ (resp. pminγ ) is the maximal (resp. minimal) power
limit on the uplink for γ ∈ I and on the downlink for γ = 0.
As the optimization problems in (18) are convex, the Karush-
Kuhn-Tucker (KKT) conditions enable determining a global
optimal (i.e., the NE at convergence) [24]. The KKT condi-
tions associated with Pγ k ,∀k ∈ K give what follows:

1
P∗γ k
−

1
bγ k + P∗γ k

= λγ , ∀k ∈ K, (19a)

λγ × (pmaxγ −

∑
k∈K

P∗γ k ) = 0, (19b)

P∗γ k ≥ p
min
γ , ∀k ∈ K, (19c)∑

k∈K
P∗γ k ≤ p

max
γ , (19d)

λγ ≥ 0, (19e)

where λγ is the KKT multiplier associated with the con-
straint (18b), and

bγ k =


N0k +

P∗0k
SIC

hij,k
, γ = i ∈ I

SIC × (Njk + P∗ikhij,k ), γ = 0

(20)
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Algorithm 4 Scheduling and Power Allocation Algorithm for
the Interference-Aware Game
1: Requires:Maximum tolerance ε ≥ 0.
2: Input: UE radio conditions, channel states, initial power

settings pu0 and p
d
0

3: For TTI t = 1, . . .,T
4: Step 1: Scheduling
5: RBs are allocated following (Pt1) or (P

t
2)

6: Step 2: Power Allocation
7: Repeat:
8: Solve (18) on the uplink ∀ i ∈ I
9: Update pun

10: Solve (18) on the downlink for the BS
11: Update pdn
12: δd = ‖pdn − p

d
n−1‖, δ

u
= ‖pun − p

u
n−1‖

13: n← n+ 1
14: Until δd ≤ ε and δu ≤ ε
15: Step 3: Update UE Queues
16: End For

We deduce from (19a) that λγ cannot be null. As such, all
P∗γ k are the solution of a second order equation that gives

P∗γ k =
bγ k ·(

√
1+ 4

bγ kλγ
−1)

2 , where λγ can be computed numer-
ically owing to

∑
k∈K P∗γ k = pmaxγ . Finally, in respect with

constraint (19c), we have what follows for the BS:

P∗0k = max(pmin0 ,
SIC × (Njk + P∗ikhij,k )

2

·(

√
1+

4
SIC · (Njk + P∗ikhij,k )λ0

− 1)), (21)

and for any uplink UE i:

P∗ik=max(pmini ,
N0k+

P∗0k
SIC

2hij,k
· (

√√√√√1+
4

N0k+
P∗0k
SIC

hij,k
λi

− 1)). (22)

C. BEST RESPONSE ALGORITHM
Algorithm 4 has the scheduling and power allocation algo-
rithm. Typically, the algorithmwill reach an NE for the power
allocation step in 3 to 4 iterations.

IX. THE ENERGY EFFICIENT GAME
Our objective in this game is to avoid power wastage as
much as feasible. Our energy efficiency objective represents
a benefit-to-cost ratio, where the benefit is represented by the
SINR of the UEs and the cost by the interferences generated
by them. To this end, any player γ weights its SINR by the
interference it creates. Accordingly, for the energy efficient
game Ge, the utility of every uplink UE i becomes:

U e
i =

∑
k∈Ki log Pikhik

N0k+
P0k
SIC∑

k∈Ki Pikhij,k
(23)

As for the BS:

U e
0 =

∑
k∈K log P0kh0k

Njk+Pikhij,k∑
k∈K

P0k
SIC

(24)

Proposition 2: Game Ge
〈
M , S0 ×

∏
i Si,U

e
〉
is a super-

modular game.
Proof: To prove the super-modularity of the game,

we need to verify the conditions discussed in the previous
section. First, the strategy space Sγ is also a compact convex
set of R|K|. Hence, it suffices to verify the super-modularity
of the objective function U e

γ of any player γ as there are no
constraint policies for Ge. For any uplink UE i, we have:

∂2 U e
i

∂Pik∂P0k
=

hij,k
(
∑

k∈Ki Pikhij,k )2(SIC · N0k + P0k )
≥ 0,

∀i ∈ I,∀k ∈ K.

And for the BS, we have what follows:

∂2 U e
0

∂P0k∂Pik
=

hij,k
SIC · (Njk + Pikhij,k )(

∑
k∈K

P0k
SIC )

2
≥ 0,

∀i ∈ I,∀k ∈ K.

A. COMPUTING THE NE
As we proved that our game is super-modular, we implement
a best response algorithm to reach its pure NEs. An NE is the
solution of the following optimization problem:

max
Pγ

U e
γ (Pγ ,P−γ ) (25a)

subject to
∑
k∈K

Pγ k ≤ pmaxγ , (25b)

Pγ k ≥ pminγ , ∀k ∈ K. (25c)

where pmaxγ (resp. pminγ ) is the maximal (resp. minimal) power
limit on the uplink for γ ∈ I and on the downlink for γ = 0.

B. DINKELBACH APPROACH
The problem presented above is non-convex and as such
cannot be solved in a straightforward manner. Nonetheless,
it is a fractional problem and an optimal solution could be
obtained by iteratively solving the parametrized convex prob-
lem according to the Dinkelbachmethod. For each uplinkUE,
the objective is rewritten as follows:

max
Pik

F(θi) =
∑
k∈Ki

log
Pikhik

N0k+
P0k
SIC

−θi
∑
k∈Ki

Pikhij,k , (26a)

subject to
∑
k∈Ki

Pik ≤ pmaxi , (26b)

Pik ≥ pmini , ∀k ∈ Ki. (26c)

And for the BS on the downlink, it can be rewritten as follows:

max
P0k

F(θ0)=
∑
k∈K

log
P0kh0k

Njk+Pikhij,k
−θ0

∑
k∈K

P0k
SIC

, (27a)
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subject to
∑
k∈K

P0k ≤ pmax0 , (27b)

P0k ≥ pmin0 , ∀k ∈ K. (27c)

The values of θ0 and θi can be calculated by iteration. The
problems in (26) and (27) are first solved for large values of
θi and θ0, respectively. Afterwards, θγ is calculated assuming
that the objective functions found in (26a) and (27a) are equal
to zero. The problems in (26) and (27) are solved and the steps
are repeated until the values of θi and θ0 satisfy the conditions
F(θi) = 0, and F(θ0) = 0, respectively. This process is
illustrated in Algorithm 5.

Algorithm 5 Calculating θγ
1: Set: θγ =M a sufficiently large value
2: Repeat:
3: Solve the problem in (26) for γ = i
4: Solve the problem in (27) for γ = 0
5: Compute θγ such as F(θγ ) = 0
6: Until F(θγ ) = 0

C. BEST RESPONSE
Similar to the game before, a best response algorithm is used
to reach an NE. Uplink players and the BS take turns solving
the Dinkelbach problem for their locally optimal powers,
until convergence is reached wherein the power levels on the
RBs no longer change. This is illustrated in Algorithm 6.

X. SIMULATIONS AND RESULTS
A. SIMULATION PARAMETERS
We seek via our different simulation scenarios to address
gains attributed to our game theoretic proposal. The simula-
tion parameters we used are presented in Table 2.

The channel gain includes the shadowing, the path loss,
and the fast fading effects. The path loss is determined using
the extended Hata path loss model [27]. The fast fading is
modeled by an exponential random variable Af with unit
parameter. The shadowing is modeled using a log-normal
random variable As = 10(

ξ
10 ), where ξ is a normal distributed

random variable with zero mean and standard deviation equal

TABLE 2. Simulation parameters.

Algorithm 6 Scheduling and Power Allocation Algorithm for
the Energy Efficient Game
1: Requires:Maximum tolerance ε ≥ 0.
2: Input: UE radio conditions, channel states, initial power

settings pu0 and p
d
0

3: For TTI t = 1, . . .,T
4: Step 1: Scheduling
5: RBs are allocated following (Pt1) or (P

t
2)

6: Step 2: Power Allocation
7: Repeat:
8: Using Algorithm 5 get the value of θi ∀ i
9: Solve (26) on the uplink ∀ i ∈ I

10: Update pun
11: Using Algorithm 5 get the value of θ0
12: Solve (27) on the downlink for the BS
13: Update pdn
14: δd = ‖pdn − p

d
n−1‖, δ

u
= ‖pun − p

u
n−1‖

15: n← n+ 1
16: Until δd ≤ ε and δu ≤ ε
17: Step 3: Update UE Queues
18: End For

to 10. This model, which is used for urban zones, takes into
account the effects of reflection, diffraction and scattering
caused by city structures. Note that the cell radius is chosen
to be 120 m, unless specified otherwise.

B. EFFECT OF THE SCHEDULING OBJECTIVE ON UE
THROUGHPUT
In this section, we study the effect of the scheduling objec-
tive on UE performance. We simulate both our scheduling
algorithms full-duplex Max SINR and full-duplex Propor-
tional Fair, alongside the power allocation proposal pre-
sented in the greedy game in section VII. We also simulate
the full-duplex Max Sum-Rate (SR) scheduling algorithm
given by the authors in [10] alongside the same power allo-
cation proposal. Finally, for the sake of comparison with
current half-duplex wireless transmissions, both traditional
half-duplex Max SINR and half-duplex Proportional Fair
algorithms are simulated. Maximum power allocation is
assumed for the latter two. The cell radius is set at 120 m.
Figure 5 has box plots with the resulting UE throughput
values.

For both the full-duplex and half-duplex algorithms,
the effect of the scheduling objectives on the resulting UE
throughput values is evident. Max SINR scheduling results
in an uneven distribution of the RBs, which can be seen
in the large box sizes. On the other hand, Proportional Fair
scheduling distributes the network’s resources more evenly.
This can be seen in the relatively smaller boxes.

Comparing half-duplex to full-duplex scheduling, it can be
noted that the latter produces almost double the throughput
values. Half-duplex Proportional Fair scheduling results in
a median throughput value close to 0.8 Mbps compared to
about 1.9 Mbps for its full-duplex counterpart. Half-duplex
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FIGURE 5. Effect of scheduling on UE throughput.

FIGURE 6. Power consumption per RB for the greedy game.

Max SINR produces a median UE throughput value of 0
Mbps with more than half the UEs attaining a throughput
equal to 0 Mbps. This is in comparison to a median of about
2.2 Mbps for its full-duplex counterpart. Finally, in compari-
son to the greedy Max Sum-Rate algorithm from the state-of-
the-art, our full-duplexMax SINR algorithm produces similar
maximum and minimum throughput values with a slightly
better median value (2.2 to 2.05 Mbps).

C. POWER CONSUMPTION
For all the following simulation and analysis, our full-duplex
Proportional Fair scheduler is used to allocate the radio
resources to pairs of uplink-downlink UEs. Our game pro-
posals are used for power allocation.

1) THE GREEDY GAME
Allocating power on the RBs using the greedy game results in
maximum power consumption. The resulting transmit power
per RB can be seen in the cumulative distribution func-
tion (CDF) plot of Fig. 6.

FIGURE 7. Power consumption per RB for the interference aware game.

On the downlink, the power per RB is equal to the maxi-
mum available power divided by the total number of available
resources. On the uplink, the transmit power on each RB is
equal to the maximum UE transmit power divided by the
number of RBs allocated to a certain UE. The transmit power
on the RBs in the downlink is approximately 6.2 dBm, and
for the uplink UEs it ranges between 8 and 24 dBm.

2) THE INTERFERENCE AWARE GAME
Similarly, allocating power on the RBs using the interference
aware game also leads to maximum power usage. Nonethe-
less, the power is not equally divided on the RBs as before.
Figure 7 has a CDF plot of the power allocated per RB on the
uplink and the downlink.

On the downlink the power on the RBs varies between
4 and 8 dBm, and on the uplink it varies between 4 and
24 dBm. This variation comes as a result of including the
generated interferences in the corresponding player utilities.
This will also result in better throughput values for the UEs
as we later on illustrate.

3) THE ENERGY EFFICIENT GAME
When we simulated this game, neither the UEs on the uplink,
nor the BS on the downlink consumed maximum power.
In fact, in more than 97% of the cases, the power assigned
on each RB defaults to the minimum allowed power at about
6 dBm. As we show later on, this power level was enough to
produce good throughput results, alongside the added benefit
of enhancing the energy efficiency, the objective of this game.

Nonetheless, the lower power limit is not the only fac-
tor impacting the allocation process. For example, if we
increase the cell radius to 1 km, the game will result in higher
power values on the RBs in order to improve the player
utilities. This can be seen in Fig. 8. In this case, the power
is significantly increased. This is due to two main reasons.
First, to compensate the SINR losses resulting from increased
BS-UE distances, and second in response to the now
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FIGURE 8. Power consumption per RB for the energy efficient game in a
large cell scenario.

decreased UE-UE interferences as a result of the cell size
being increased. The power per RB on the uplink now has a
median value at 10 dBm and can reach up to 24 dBm. On the
downlink, about 20% of the UEs now transmit at a power
larger than the minimum value.

D. PERFORMANCE EVALUATION IN TERMS OF UE
THROUGHPUT
We assess the performance of our proposed power allocation
algorithms in terms of resulting UE throughput. We simu-
late the power allocation proposals alongside the full-duplex
Proportional Fair scheduling algorithm. The cell radius con-
sidered in this simulation is 120 m. The results can be seen
in Fig. 9.

The greedy game, the interference aware game, and the
energy efficient game are all plotted. Comparing between the
greedy game and the interference aware game, it is evident
that better results are produced when the players mind the
interferences they generate. The interference aware game has
a higher maximum throughput value of 4 Mbps and a higher
minimum value as well (1.2 Mbps compared to 0.25 Mbps
for the greedy game). Nonetheless, it is clear that both algo-
rithms waste power. The simulations for the energy efficient
game produce good results with lower power consumption.
In comparison, the greedy game had around 25% of the
UEs with throughput values less than 1.3 Mbps, about the
minimum recorded throughput value for the energy efficient
game.

Nonetheless, the relevance of one game over the other
might change depending on the scenario at hand. In what
follows, we increase the cell radius to 1 km, and note the
resulting UE throughput values for each of the games. The
results can be seen in Fig. 10. The minimum power per RB is
set to 6 dBm.

An increase in cell size decreases inter-UE interference
and lowers the SINR values at UEs far away from the BS.
An increase in UE power per RB would most benefit the UEs

FIGURE 9. Effect of power allocation on UE throughput in a small cell
scenario.

FIGURE 10. Effect of power allocation on UE throughput in a large cell
scenario.

as it would improve their SINR, without affecting other UEs
as much as it did before. As a result, the greedy game now
produces the best performance in terms of UE throughput
values. It produces a higher median value at about 1 Mbps,
compared to 0.65 and 0.5 Mbps for the other two games, and
it has much more UEs attaining throughput values close to
the demand of 4 Mbps as well.

E. PERFORMANCE EVALUATION IN TERMS OF AVERAGE
UE WAITING DELAY
As our queue model is non full-buffer, we are able to com-
pute the average UE waiting delay using Little’s formula.
We calculate the latter across multiple simulation runs for
full-duplex Proportional Fair alongside each of our power
allocation proposals. We also compute the average waiting
delay for the full-duplex Max Sum-Rate algorithm simulated
using the greedy game, and for half-duplex Proportional Fair
using maximum power allocation as well. In this simulation,
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FIGURE 11. Effect of power allocation on average UE waiting delay in a
small cell scenario.

FIGURE 12. Effect of power allocation on average UE waiting delay in a
large cell scenario.

the cell has a radius of 120 m. The results can be seen in the
CDF plot of Fig. 11.

As with the UE throughput values, the half-duplex algo-
rithm produces the worst waiting delays with averages
exceeding 4.16 ms. The greedy game produces average UE
waiting delays between 3.1 and 3.75 ms, the interference
aware game between 3 and 3.1 ms, and the energy efficient
game between 2.8 and 3 ms. On the other hand, the greedy
Max Sum-Rate algorithm results in average UE waiting
delays ranging between 2.9 and 3.3 ms. As with throughput,
the fairness imposed by Proportional Fairness scheduling will
come at a cost in network and UE performances. Nonethe-
less, in this case both the interference aware and the energy
efficient game were able to outperform, or at least match,
the performance of greedy scheduling.

We now repeat the same simulation, albeit with the cell
radius increased to 1 km. Fig. 12 has a CDF plot with
the resulting average UE waiting delays. Similar to the

FIGURE 13. The price of anarchy for the interference aware game.

results seen in the previous section, the performances of the
games are flipped. While half-duplex Proportional Fair still
produces the largest average waiting delay (about 5 ms),
the greedy game now actually produces the lowest waiting
delay with average values between 3.95 and 4.85 ms. In this
case, the greedy game produces lower waiting delays than
the greedy Max Sum-Rate scheduler. This can be traced
back to several factors, primarily the ability of full-duplex
Proportional Fair to further exploit the effects of multi-user
diversity in a dynamic arrivals scenario.

F. THE PRICE OF ANARCHY
The price of anarchy [28] is a game theory concept which
measures how the efficiency of a system degrades due to
the selfish behavior of its players. We study the price of
anarchy in the case of the interference aware game. In this
non-cooperative game proposal the uplink UEs and the BS on
the downlink will each seek to maximize their own utilities.
This is done in turn until an NE is achieved. A more global
approach would be to maximize the sum of the uplink and
downlink utilities. This problem can be written as follows:

max
Pγ

∑
i∈I

∑
j∈D

∑
k∈K

(log(
Pikhik

N0k +
P0k
SIC + Pikhij,k

)

+ log(
P0kh0k

Njk + Pikhij,k +
P0k
SIC

)), (28a)

subject to
∑
k∈K

Pγ k ≤ pmaxγ , (28b)

Pγ k ≥ pminγ , ∀k ∈ K, (28c)

where (28a) is the objective of this problem: to maximize
the sum of the player utilities. (28b) and (28c) are the power
constraints for the BS on the downlink and the UEs on the
uplink, for γ = 0 and γ = i, respectively.

In what follows we compare the resulting objective value
from the sum of maximizing the separate utilities (distributed
approach) vs. the maximization of the sum of utilities i.e., the
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global optimal (centralized approach). Figure 13 has a CDF
plot of the sum of objective values generated by maximizing
the player utilities separately divided by the result yielded by
the global problem.

In more than 80% of the cases, the selfishness of the
non-cooperative game costs less than 7% in objective effi-
ciency. In some rare cases, the selfish approach achieves
less than 80% of the result achieved by the global objec-
tive. Nonetheless, this disparity in objectives does not yield
better throughput results for the global optimal problem.
As the uplink and downlink transmissions are intertwined,
an increase in the uplink UE power will negatively impacts
its paired downlink UE and vice versa.

XI. CONCLUSION
In this paper, we put forward a game theoretic framework for
power allocation in full-duplex wireless networks. Coupled
with both greedy and fair scheduling algorithms, we propose
several non-cooperative games for power allocation. These
games are played between the user equipment on the uplink
and the base station on the downlink. The first of these games
is greedy, wherein each player seeks to maximize its radio
conditions individually. The second game is interference
aware, wherein players take their generated interference into
account. And our third proposal, the energy efficient game,
aims to better utilize the available power while combating
the full-duplex interferences. Via a set of simulations we
show that the relevance of each game depends in fact on the
scenario at hand. The energy efficient game saves power and
is most viable in small cells, whilst the greedy game delivers
the most in terms of performance when it comes to large cells.
In future works, we examine the efficiency of our work in a
multi-cell network.
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