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ABSTRACT

The exponential growth in the usage of mobile networks along with the increasing number of User
Equipments (UEs) are exacerbating the scarcity of frequency resources. Dense frequency reuse on the
downlink of multiuser Orthogonal Frequency Division Multiple Access networks leads to severe Inter-
Cell Interference (ICI) problems. Resource and power allocation techniques are required to alleviate the
harmful impact of ICL. Contrarily to the existing techniques that consider single-cell resource and power
allocation problem without taking ICI into account, we formulate a centralized downlink multi-cell joint
resource and power allocation problem. The objective is to maximize system throughput while guaran-
teeing throughput fairness between UEs. We demonstrate that the joint problem is separable into two
independent problems: a resource allocation problem and a power allocation problem. Lagrange duality
theory is used to solve the centralized power allocation problem. We also tackle the resource and power
allocation problem differently by addressing it in a decentralized manner. We propose a non-cooperative
downlink power allocation approach based on game theory. The players are the base stations, and each
base station seeks to maximize its own utility function. We investigate the convergence of our proposed
centralized and decentralized approaches, and we compare their performance with that of state-of-the-

art approaches.

© 2017 Published by Elsevier B.V.

1. Introduction

Multiuser Orthogonal Frequency Division Multiple Access
(OFDMA) networks, such as the Third Generation Partnership
Project (3GPP) Long Term Evolution (LTE) [1] and LTE-Advanced
(LTE-A) [2] networks, are able to avoid the negative impact of
multipath fading and intra-cell interference, by virtue of the
orthogonality between subcarrier frequencies. Nevertheless, Inter-
Cell Interference (ICI) problems arise on the downlink of dense
frequency reuse networks due to simultaneous transmissions on
the same frequency resources. System performance is interference-
limited, since the achievable throughput is reduced due to ICI.

Fractional Frequency Reuse (FFR) [3] and Soft Frequency Reuse
(SFR) [4] were introduced to avoid the harmful impact of ICI
on system performance, by applying static rules on Resource
Block (RB) usage and power allocation between cell-center and
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cell-edge wusers. Heuristic Inter-Cell Interference Coordination
(ICIC) techniques are proposed to achieve ICI mitigation without
severe degradation of the overall system throughput. For instance,
authors of [5,6] propose suboptimal solution for the resource
allocation problem. The objective is to minimize ICI by exploiting
User Equipment (UE) diversity to maximize system throughput.
They propose a two-level algorithm that operates at the evolved-
NodeBs (eNodeBs) and at a central controller connected to several
eNodeBs. In [7], a heuristic power allocation algorithm is intro-
duced to reduce energy consumption and to improve cell-edge
UEs throughput. It has been proven that the proposed algorithm
reduces power consumption without reducing the achievable
throughput. Moreover, it mitigates ICI and increases the achievable
throughput for cell-edge UEs.

Beside heuristic resource and power allocation algorithms
[8], convex optimization is used to improve the performance of
multiuser OFDMA networks, and to alleviate the negative impact
of ICI on UE throughput. Resource and power allocation problem
is usually formulated as nonlinear optimization problem, where
the objective consists in maximizing system throughput, spectral
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efficiency, or energy efficiency, with constraints on the minimum
throughput per UE or other Quality of Service (QoS) parameters
[9]. The exponential growth in the usage of mobile networks along
with the increasing number of UEs are exacerbating the scarcity
of frequency resources.

The majority of state-of-the-art contributions formulate the
resource and power allocation problem for a single cell network
[10-12], or do not consider the impact of ICI on system per-
formance. For instance, the tradeoff between spectral efficiency
and energy efficiency is addressed in [12], and a low-complexity
suboptimal algorithm is proposed to allocate RBs for practical
applications of the tradeoff. However, the system model consists
of a single cell OFDMA network, where one subcarrier is assigned
to at most one UE. Therefore, ICI problems are not considered. In
this article, we formulate the joint resource and power allocation
problem for the downlink of multiuser OFDMA networks, as a cen-
tralized multi-cell optimization problem. Inter-cell interference is
taken into account, and throughput fairness between the different
users is guaranteed. We prove that our joint problem is separable
into two independent optimization problems: a resource allocation
problem and a power allocation problem. Our objective is to
maximize system throughput, while satisfying constraints related
to resource usage, Signal-to-Interference and Noise Ratio (SINR),
and power allocation. We also propose a decentralized power allo-
cation approach that does not rely on centralized controllers. Each
base station maximizes its own utility function in a distributed
manner. We evaluate the performance of the proposed approaches,
and we compare their performance with state-of-the-art resource
and power allocation approaches.

The remainder of this article is organized as follows. In
Section 2, we describe the limitations of the existing state-of-the-
art approaches. In Section 3, system model is presented followed
by our joint resource and power allocation problem formulation.
The joint problem is decomposed into two independent problems
in Section 4: a resource allocation problem and a power allocation
problem. We also demonstrate the convexity of the formulated
problems. In Section 5, we solve both resource and power alloca-
tion problems using the Lagrange duality theory. Our decentralized
power allocation approach is introduced in Section 6. Then, we in-
vestigate the convergence of the centralized and the decentralized
approaches in Section 7, where we also provide comparisons with
other approaches. Section 8 concludes this article and summarizes
our main contributions.

2. Related work
2.1. State-of-the-art contributions

For a given multiuser OFDMA network, resource and power
allocation problem is formulated as a centralized optimization
problem [10-12]. Centralized inter-cell coordination is therefore
required to find the optimal solution, where the necessary infor-
mation about SINR, power allocation, and resource usage are sent
to a centralized coordination entity.

In [13], the multi-cell optimization problem is decomposed
into two distributed optimization problems. The objective of the
first problem is to minimize the transmission power allocated
for cell-edge UEs, while guaranteeing a minimum throughput for
each UE. RB and power are allocated to cell-edge UEs so that
they satisfy their minimum required throughput. The remaining
RBs and the remaining transmission power are uniformly allo-
cated to cell-center UEs. At this stage, the second problem aims
at finding the resource allocation strategy that maximizes the
achievable throughput for cell-center UEs. An improved version of
this adaptive ICIC technique is proposed in [14], where resource
allocation for cell-edge UEs is performed depending on their

individual channel conditions. However, the main disadvantage
of this adaptive ICIC technique and the proposed improvement
is that they do not consider the impact of ICI between adjacent
cells when power allocation is performed. Each cell solves its own
optimization problem without requesting additional information
from its neighboring cells.

Resource and power allocation for a cluster of coordinated
OFDMA cells are studied in [15]. Energy efficiency is maximized
under constraints related to the downlink transmission power.
However, noise-limited regime is considered, and ICI is neglected.
Moreover, energy-efficient resource allocation for OFDMA systems
is investigated in [16], where generalized and individual energy
efficiencies are defined for the downlink and the uplink of the
OFDMA system, respectively. Properties of the energy efficiency
objective function are studied, then a low-complexity suboptimal
algorithm is introduced to reduce the computational burden of
the optimal solution. Subcarrier assignment is made easier using
heuristic algorithms. Authors of [17] consider the joint resource
allocation, power allocation, and Modulation and Coding Scheme
(MCS) selection problem. The joint optimization problem is sep-
arated into resource allocation and power allocation problems,
and suboptimal algorithms are proposed. Another low complexity
suboptimal resource allocation algorithm is proposed in [18]. The
objective consists in maximizing the achievable throughput, under
constraints related to resource usage in the different cells. Coop-
eration between adjacent cells is needed. A multi-cell resource
allocation approach for OFDMA systems with decode-and-forward
relaying is proposed in [19], where an interference constraint
is introduced along with time sharing variables. Although this
approach guarantees throughput fairness between the different
users, the spectral efficiency is reduced since the cells are not
allowed to use the available spectrum during 100% of the time
due to time sharing between base stations and relays.

Minimizing energy consumption and maximizing spectral
efficiency in multiuser OFDMA networks cannot be achieved si-
multaneously. Energy-bandwidth tradeoff is studied in [20], where
authors consider the total energy consumption versus the end-to-
end rate in wireless multihop networks. For an arbitrary placement
of wireless nodes, resource and power allocation that minimizes
the energy level required to achieve a given data rate is found.
However, interference-free resource allocation is considered, and
the impact of ICI on system performance is not taken into account.

2.2. Our contributions

The majority of state-of-the-art contributions that formulate
spectral efficiency or energy efficiency problems as centralized
optimization problems, neglect the impact of ICI on system per-
formance [10-12], or introduce suboptimal approaches to solve
resource and power allocation problems [21-23]. Moreover, perfor-
mance comparisons are not made with other distributed heuristic
ICIC algorithms, that are usually characterized by a lower compu-
tational complexity. In our work, we consider the multi-cell down-
link resource and power allocation problem, where the objective
is to maximize system throughput while guaranteeing throughput
fairness between the different UEs. Moreover, ICI is taken into
account when solving the centralized resource and power alloca-
tion problem. We also formulate a decentralized non-cooperative
power allocation approach based on game theory. The players are
the cells, and each cell seeks maximizing its own utility function
independently of the other cells in the network. We investigate the
convergence of both centralized and decentralized approaches, and
we compare their performance with that of the frequency reuse-1
model, the frequency reuse-3 model, FFR, and SFR techniques. Our
major contributions are summarized as follows:



114 M. Yassin et al./ Computer Communications 107 (2017) 112-124

« Propose an original formulation of the centralized joint re-
source and power allocation problem: instead of considering
a single cell OFDMA network, we formulate our problem for a
multi-cell OFDMA network, taking ICI problems into account.
The objective is to maximize the mean rate per UE, and ensure
a proportional fair rate for all the active UEs.

Decompose the joint downlink resource and power allocation
problem into two independent problems, and solve the central-
ized power allocation problem using Lagrange duality theory
and subgradient projection method.

Formulate a novel decentralized super-modular game for re-
source and power allocation, and propose a best response
algorithm to attain the Nash Equilibrium. Then, solve the
decentralized power allocation problem using subgradient
projection method.

Validate the convergence of the proposed centralized and
decentralized approaches and evaluate their performance in
comparison with broadly adopted state-of-the-art approaches.

3. System model and problem formulation
3.1. System model

We consider the downlink of a multiuser OFDMA system that
consists of I adjacent cells and K active UEs. Let Z={1,2,...,1}
denote the set of cells, and K = {1, 2, ...,K} the total set of active
UEs. We also define K(i) as the number of UEs served by cell i.
Thus, we have Y°!_; K(i) = K. The set of available RBs in each cell
is denoted by V' = {1,2,...,N}.

In OFDMA networks, system spectrum is divided into several
channels, where each channel consists of a number of consecutive
orthogonal OFDM subcarriers [24]. An RB is the smallest schedul-
ing unit. It consists of 12 consecutive subcarriers in the frequency
domain, and seven OFDM symbols with normal cyclic prefix in
the time domain [25] (or six OFDM symbols with extended cyclic
prefix). Frequency resources are allocated to UEs each Transmit
Time Interval (TTI), which is equal to 1 ms. When the frequency
reuse-1 model is applied along with homogeneous power alloca-
tion, each RB is allocated the same downlink transmission power
”"‘%, where Pnax denotes the maximum downlink transmission
power per cell. The signal to interference and noise ratio for a
UE k attached to cell i and allocated RB n is given by:

c ni,nGk,i,n
kin = >
No + Zi’#i ni’,nGk,i’,n

where 7;, is the downlink transmission power allocated by cell i
to RB n, G;, denotes channel gain for UE k attached to cell i
and allocated RB n, and Ny is the thermal noise power. Indexes
i and i’ refer to useful and interfering signals respectively. In our
work, we rely on perfect channel state information to infer the
SINR. Authors of [26] provide models to account for imperfect
channel state and study the impact on energy efficiency. Notations,
symbols, parameters, and variables used within this document are
reported in Table 1.

(1)

3.2. Problem formulation

3.2.1. Centralized multi-cell optimization problem

We define 6}, as the percentage of time during which UE k is
associated with RB n. 6y ,, Vke K,Vn e N, and 7;,,Vie Z,Vn e N,
are the optimization variables of the joint resource and power
allocation problem. Our objective is to manage resource and power
allocation in a manner that maximizes system throughput and
guarantees throughput fairness between the different UEs. The
standard approach is to have integer scheduling variables, while
in our problem formulation, 6y, and 7;, are continuous variables.

Table 1
Sets, parameters and variables in the article.

i Index of cell

k Index of UE

n Index of RB

T Set of cells

K Total set of UEs

K(i) Set of UEs associated to cell i

N Set of RBs

Pkin Peak rate of UE k associated with RB n on cell i
Tin Transmit power of cell i on RB n

Giin Channel gain for UE k over RB n on cell i

No Thermal noise density

Okn Percentage of time UE k is associated with RB n
n Total system achievable mean rate

okin  SINR for UE k over RB n on cell i

Prax Maximum DL transmission power per cell
T min Minimum DL transmission power per RB
T'(i)  Set of neighboring cells for cell i

In fact, using continuous variables will decrease the computation
time and the complexity of the problem without losing generality.
A simple way of implementing the solution is to extend the
Round-Robin scheduler in a way to allocate equal time shares to
the users in the cell on each RB.

The peak rate of UE k when associated with RB n on cell i is

given by:
ni,nGk,i,n (2)
No + Zi’#i ”i’,nGk,i’,n

Pkin = log <1 +

Then, the mean rate of UE k is given by:

Z (9k,n~,0k.i,n)

nexN

TinGri
Y (6 log( 1+ L ' ’
Z ( k.n g( No + Z,—,# it nGrirn )

neN

Our centralized multi-cell joint resource and power allocation
problem seeks rate maximization in a proportional fair manner.
We make use of the logarithmic function that is intimately asso-
ciated with the concept of proportional fairness [27]. Our problem
is formulated in the following:

maximize 7
0.7

) TinGr.in
=> > log (Z Ocn- log (1 * No + > i 7Ti’<"G’<‘f’~“)) e

i€ keK(i) neN
subjectto Y G, <1, Vne, (4b)
keK (i)
D On =1, Vke K(i), (4c)
neN
Z Tin < Prax, VieZ, (4d)
neN
Tin > Tmin, Yie Z,Vn e N, (4de)
0<6,<1,VkeK(i),VneN. (4f)

The objective function n ensures a proportional fair rate for all
UEs in the network. Constraints (4b) ensure that an RB is used
at most 100% of the time, and constraints (4c) ensure that a UE
shares its time on the available RBs. Constraints (4d) guarantee
that the total downlink transmission power allocated to the
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available RBs does not exceed the maximum transmission power
Pmax for each cell i, and constraints (4e) represent the minimum
power constraint of the transmit power allocated to each RB. In
fact, the power allocated to each RB is larger than a predefined
value denoted m;,, and the transmit power of cell i is lower than
Pmax. In practice, these bounds are related to hardware limitations.
Orn.Vke K,VneN, and m;,,Vie I,Vne N are the optimization
variables of the joint resource and power allocation problem.

In order to reduce the complexity of the joint resource and
power allocation problem (4), we prove that this problem is
separable into two independent problems: a resource allocation
problem and a power allocation problem. In fact, maximizing the
objective function of problem (4) is achieved by maximizing the
following term:

Z Z Z (IOg (ek,n) + log (IOI(,i,n))' (5)
ieZ keK (i) neN

The proof of this hypothesis is given in Appendix A.
4. Problem decomposition

We tackle ICIC as an optimization problem, where we intend to
maximize the mean rate of UEs in a multiuser OFDMA system. We
consider a system of [ cells, having K(i) UEs per cell i. According
to (5), and due to the absence of binding constraints, the opti-
mization problem (4) is linearly separable into two independent
problems: a power allocation problem and a resource allocation
problem.

4.1. Centralized multi-cell power allocation problem

In the first problem, the optimization variable m is considered,
and the problem is formulated as follows:
maximize 7,
T

= log (log( 1+ Lnkin 6a
Z Z Z & ( & ( No + Zi'#‘ ni’,nGk,i’,n ( )

ieT ke (i) neN’

subject to Y Tip < Prax, Vie T, (6b)

neN

Tin > Mmin, YieZ,VneN. (6¢)

Problem (6) consists in finding the optimal power allocation.
However, it is not a convex optimization problem as formulated
in (6). In the following, we introduce a variable change that allows
to formulate problem (6) as a convex optimization problem as

follows:
Z Z ZIOg (:Okln) (73)

ieT keK (i) neN

max1m12e n, =

i nG
subject to in<log|1+ Ltk in ,
] Pk.in g ( Np + Zi’#i 7o nGrirn

VieZ VkeK(i),Vne N, (7b)
Z Tin < Pnax. YieZ, (7¢)
neN
Tin > Tmin, Yie Z,Vn e N. (7d)

Let us consider the following variable change:
Prin=log (exp (pin) — 1), Vie ZVke K(i),Vn e N,  (8a)

Tin = log(miy), YieI,VneN. (8b)
Hence, the original variables are given by:
Prin =10g (exp (Bin) +1). Yie Yk e K().Vn e N, (9a)

Tin=exp (W), VieZ, VneN. (9b)

To show that the optimization problem (7) is a convex
optimization problem, we need to show that the objective func-
tion is concave and the inequality constraint functions define
a convex set. After applying the variable change on peak rate
constraints (7b), they can be written as:

TinGhin
in<log| 1+ o—c—"F+—)
Pk,in ( No + Zi’#i ﬂif,nGk,i’.n)

VieZ, Vke K(@{),VneN

exp(ﬁi.n)ck.i.n
No + X1, €Xp (T 0) Gri
eXP(Tin)Gr,in
No + 34 €XP (i n) G i n
exP(Pk i n) (NO + Zx /4] exp(n,/ )Gk i, n)
=
exp(ﬂ: n)Gk in

= log(exp(pkin) +1) < log (1 +

= exp(Oin) +1 <1+

<1

G
+ZeXp(pm+m = i) o k1, ) <0,

= log (eXP (Prin — Tin) =—— G
’ i #i

VieZ Vke K(@i),VneN.

These constraints are the logarithmic of the sum of exponential
functions. Thus, they are convex functions [28]. When we apply
the variable change on power constraints (7c), we get:

Zni,n < Pnax, YVieT

neN

= lOg <Z exp (ﬁln)> - lOg (Pmax) <0, Viel.

neN
Since log(Xexp) is convex [28], the constraints at hand are
therefore convex. Using the variable change, the power allocation
problem (7) can be written as follows:

=YY" > log(log (exp (Bin) + 1))

ieZ kek(i) neN

maximize 7, (10a)
0.

subject to

Jin

) % ~ Gy
+ Zexp (pk.i_n + T[i’,ﬂ — ni.n) G’(.l ,n) < O,
k.in

. _ N
log (exp (Prin = Tin) g
i

VieZ YkeK(@i),VneN, (10b)

log (Z exp (J?,;n)> —log (Pnax) <0, VieZ, (10c)
neN

Tin > log (7Tmin), VieZ,Vne N. (10d)

The objective function of problem (10) is concave in p and 7,
and constraints (10b), (10c), and (10d) are convex functions. Thus,
the power allocation problem is a convex optimization problem.

4.2. Centralized resource allocation problem

The optimization variable 6 is considered in the second
optimization problem that is given in the following:

2 > log(Bhn)

i€Z kek (i) neN

max1mlze n, = (11a)
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subject to >~ G <1, VneN, (11b)
ke (i)

Y O < 1. Vk e K(D), (11¢)

neN

0<6, <1, VkeK(i), ¥neN. (11d)

As demonstrated for the power allocation problem (6), we
prove that problem (11) is indeed a convex optimization prob-
lem in €. The objective function (11a) of the resource allocation
problem (11) is concave in , since the log function is concave
for @ <]0; 1]. Moreover, constraints (11b), (11c), and (11d) are
linear and separable constraints. Hence, the resource allocation
problem (11) is a convex optimization problem, and it is separable
into Z subproblems. For each cell i, the ith optimization problem
is written as follows:

maximize (1,);= Y > log(6kn) (12a)
0 kek (i) neN
subject to Z On<1, VneN, (12b)
ke (i)
> On = 1. Vke K(). (12¢)
neN
0<6kn=<1, VkeK(i),VneN. (12d)

5. Centralized multi-cell resource and power allocation

As stated in the previous section and proven in Appendix A,
the joint resource and power allocation problem (4) is separable
into two independent convex optimization problems: a power
allocation problem, and a resource allocation problem. In this
section, we solve the resource and power allocation problems
using Lagrange duality theory and subgradient projection method.

5.1. Solving the centralized power allocation problem

5.1.1. Lagrange-based method

Since the power allocation problem (10) is a convex optimiza-
tion problem, we can make use of Lagrange duality properties,
which also lead to decomposability structures [29]. Lagrange
duality theory links the original problem, or primal problem, with
a dual maximization problem. The Lagrangian of problem (10) is
given as follows:

L(p.T.A.v) =Y > > log(log(exp (fiin)+1))

ieT kek(i) neN

—~ - N,
33" 3" Mkin(log(exp(Piin — Fin) ——

ieT kek (i) neN Gk,i,n
Gy.ir,

+ Y exp(Dyin + Tiin — Tin) C =)
i'eN k.i,n
P4

=3y (log (Z exp (ﬁm)) —log (Pmax))~ (13)
ieT neN

The optimization variables p and 7 are called the primal vari-
ables. Ay;, and v; are the dual variables associated with the (k,
i, n)th inequality constraint (10b) and with the ith inequality
constraint (10c), respectively.

After relaxing the coupling constraints (10b) and (10c), the
optimization problem separates into two levels of optimization:

lower level and higher level. At the lower level, L(p, &, A, v) is the
objective function to be maximized. py;, and 7;, are the opti-
mization variables to be found. At the higher level, we have the
master dual problem in charge of updating the dual variables A
and v by solving the dual problem:

inimi L(p, T, A 14
mm&nze n;}%x( (p, T, v)) (14a)
subject to A >0, (14b)
v>0. (14c)

In order to solve the primal optimization problem (lower level
of optimization), we use the subgradient projection method. It
starts with some initial feasible values of py ;, and 7;, that satisfy
the constraints (10d). Then, the next iteration is generated by
taking a step along the subgradient direction of py;, and 7j,.
For the primal optimization variables, iterations of the subgradient
projection are given by:

- - oL
Prin(®+1) = P in(t) +6(F) x 7%
Pk.in
Vke K(i),YieI VneN, (15a)
~ ~ oL .
Tin(t+1) =T (8) +8(8) x PE VieZ, VneN. (15b)
in

The scalar §(t) is a step size that guarantees the convergence
of the primal optimization problem [29]. The partial derivatives of
the objective function L(p, T, X, v) with respect to py;, and ;.
are given in the following:

aL exp (/A’k,z:n)

— = — — — Akins
3Pkin  (exp (Prin) + 1) log (exp (in) + 1) b
Yk e K(i),VieZ,Vne N, (16a)
oL exp (i) .
— = Ain —Vime————=—, VieZ,Vne N. 16b
87Ti,n k;(i) kin i ZN exp (T[i,n) ( )
neN

The dual function g(X,v)=max;z(L(. % A,v)) is differ-
entiable. Thus, at the higher optimization level, the master dual
problem (14) can be solved using the following gradient method:

=N . N
Ain(t+1) = A jn(t) +8(t)(log(exp(pg;, — 1) G, (.)
K,1,n
~ =~ =« Gk,i’,n
+ Z eXP(Ogip + iy — Tiy) G ),
if,e#/V_' k,i.n
r#l

Vk e K(i),Vie Z,Vn e N, (17a)

Vit +1) = v;(t) +8(t) <10g (Z exp (ﬁgn)) —log (Pmax)),

neN

VieZ, VneWN, (17b)

where t is the iteration index, and §(t) is the step size at iteration t.
Appropriate choice of the step size [30] leads to convergence of
the dual algorithm. 77, and ,6,:’“1 denote the solution to the
primal optimization problem. When t — oo the dual variables A(t)
and v(t) converge to the dual optimal A* and v*, respectively. The
difference between the optimal primal objective and the optimal
dual objective, called duality gap, reduces to zero at optimality,
since the problem (10) is convex and the KKT conditions are sat-
isfied. We define Ap, AT, AA, and Av as the differences between
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the optimization variables obtained at the current iteration and
their values at the previous iteration. They are given by:

Apt+1) =lpt+1) - p@l, (18a)
AR +1) = |7t +1) - 7D, (18b)
AA(E+1) = A +1) = XD, (18¢)
Av(t+1) = vt +1) — v(D)]. (18d)

5.1.2. Iterative power allocation algorithm
The procedure for solving the centralized power allocation
problem is described in Algorithm 1. Initially, the primal optimiza-

Algorithm 1 Dual algorithm for centralized power allocation.

1: Parameters: the utility function L(p, 7T, A, v), Pnax, and 7 p;p.

2: Initialization: set t = tprmg = tgug =0, and 7, > Ty, Vi€
I,Vne N, such as Y, .y7in < Pnax, YieZ. Calculate 7;,(0)
and py ; ,(0) accordingly, Vk € K(i),Vie Z,Vn e N.

3: Set Ay, (0) and v;(0) equal to some non negative value, Yk e
K(@),YieI VneN.

4: (T (t+1),p°(t +1)) < PRIMALPROBLEM(V* (t), A" (t))

5. (v (t+1),A"(t + 1)) < DUALPROBLEM(TT*(t + 1), p*(t + 1))

6: if (AT*(t+1) > ¢)or (Ap*(t+1) >¢€)or (Av*(t+1)>¢€) or
(AL (t+1) > €) then

7 t<—t+1

go to 4

9: end if

%

tion variables py;, and 7;, as well as the dual variables A;;,
and v; start with some initial feasible values. t,ty;mq, andtg,g
denote the number of rounds required for the centralized power
allocation problem to converge, the number of iterations for
the primal problem, and the number of iterations for the dual
problem, respectively. At each round t, we start by updating the
primal optimization variables, using the PRIMALPROBLEM function
given in Algorithm 2. The solution to the primal optimization

Algorithm 2 Primal problem function.
1: function PRIMALPROBLEM(V* (t), A*(t))
2 fori=1 to |Z|] do
3: forn=1to |N]| do
4 ﬁi,n(tprimal +1) < max(IOg(nmin); ﬁi,n(tprimal) +
8(6) x 52-)

5 for k=1 to |K(i)| do

6 :b\k,i.n(tprimal +1) < ﬁk,i,n(tprimal) +8(t) x BplkL,vn
7: end for b
8 end for

9 end for
10:  if (AT (Eprimg + 1) > €) OF (AP(Eyrimg + 1) > €) then
1 tprimal < Eprimar + 1
12: go to 2

13: end if
14: return T (Eprimg + 1), O Eprimar + 1)
15: end function

problem at the current round t is denoted by ﬁi*n(t-i-]) and
P ;5 (t+1). The PRIMALPROBLEM function updates 7T; , (tprima + 1)
and ﬁ,g_\i,n(tpn-ma, +1), and increments tprmg until AR (tyrimg + 1)
and AQ(tprimq + 1) become less than e.

Then, the solution to the dual optimization problem at the

current round ¢, denoted by v} (t + 1) and )L;_i 2 (£ +1) is calculated

using the DUALPROBLEM function given in Algorithm 3. v; and Ay,

Algorithm 3 Dual problem function.
1: function DUALPROBLEM(TC* (t + 1), p*(t + 1))
2: fori=1to |Z| do
3 Vi (tguar + 1) < max(0; v;(tgyqr) + 6(8) x
(10g(Xpep exp (i), (t +1))) — log(Pnax)))
forn=1to |NV| do
5: for k=1 to |K(i)| do
: MeinCuar + 1) < max(0; Ay p (Egyar) + 8(E) x
(10g(exp (D, (E+1) = 77, (€ + 1) g + Yy exP(Pf, (E +
o+ V4

R

1) 477 (4 1) = 7, (¢ + 1))%)))

: end for b
8: end for
9: end for
10: if (Av(tgug+1) >e€)or (Ar(tg,qy +1) > €) then
1: tdual < tdua +1
12: go to 2
13: end if
14:  return v(tgq + 1), A(tgua + 1)
15: end function

are updated using the obtained primal solution ﬁifn(t-i-l) and
ﬁl:_i,n(t"‘ 1), until Av(tgq+1) and AA(tjuq +1) become less
than €. An additional round of calculations is performed, and t is
incremented as long as AT*(t + 1) or AT*(t +1) or Av*(t +1) or
AL*(t + 1) is greater than €. Otherwise, the obtained solution at
the current round is the optimal solution to the centralized power
allocation problem.

5.2. Solving the resource allocation problem

In this subsection, we search for the optimal solution to the re-
source allocation problem (12). For each cell i, the problem (12) is
a convex optimization problem, as proven previously.

Theorem 5.1. For each cell i, the optimal solution to the resource
allocation problem (12) is given by:
1

max (|K@D], N])’

The proof of Theorem 5.1 is given in Appendix B. When
the number of active UEs is less than the number of avail-
able resources, 6, = ‘}/—l,‘v’k € K(i),¥Yn e N. Thus, the available
resources are not fully used over time, and each UE is perma-
nently served. Otherwise, when |K(i)| > |V, the optimal solution
is: On= V{?T)l,‘v’kelc(i),‘v’ne/\/'. In this case, each RB is fully
used over time, while UEs are not permanently served over time.

Okn = Vk e K(i),Vn e NV. (19)

6. Decentralized resource and power allocation
6.1. Problem formulation and decomposition

We have shown that the power allocation problem can be
solved optimally in a centralized fashion. The centralized approach
is the reference approach for performance comparison, since
it finds the optimal resource and power allocation for all the
active users. Nevertheless, the computational complexity of the
centralized approach motivates the introduction of low-complexity
decentralized approaches. In this section we investigate the de-
centralized resource and power allocation approach. Base stations
of the LTE/LTE-A networks are autonomous entities, and each
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cell performs resource and power allocation independently of the
other cells. Each cell i maximizes its own utility function, which is
given by:

T G] i
log ( Oy . log {1+ Sl
Z Z & ( - 108 ( No + > i T nGevon

kek (i) neN’

= > > log(6kn)

kek (i) neN

TT; Gk'
+ log (log |1+ Sl . 20
Z Z & ( & ( No + Zi’;ﬂ' ni’.nGk,i’,n ( )

kek (i) neN

The decentralized joint resource and power allocation problem is
separable into two independent problems: a resource allocation
problem and a power allocation problem. The resource alloca-
tion problem is solved in a distributed manner as proven in the
previous section. We propose a decentralized power allocation
approach based on game theory, where the cells are the decision
makers or players of the game. We define a multi-player game
G between the |Z| cells. The cells are assumed to make their
decisions without knowing the decisions of each other.

The formulation of this non-cooperative game G = (Z, S,U) can
be described as follows:

+ A finite set of cells Z = (1,..., |Z]).

« For each cell i, the space of pure strategies is S; given by what
follows:

S; = {m; € RV such as 7, = mpin, Vi€ Z,Vn e N, and Y,
Tin < Pmax, Vi e I}.

An action of a cell i is the amount of power m;, allo-
cated to the RB n, and the strategy chosen by cell i is then
= (Tiq. ..., miN). A strategy profile w = (7q, ..., T|z) Speci-
fies the strategies of all players and S =Sy x ... x Sz is the set
of all strategies.

A set of utility functions U = (U; (i), Uy (), ...,U;(ir)) that
quantify players’ utility for a given strategy profile &, where a
given utility U; for cell i is such as:

T nGr i
Ui = log (log( 1+ Ln ki . 21
=2 2 log ( & ( No + 34 T nGreirn 1)

kek(i) neN

For every i, U; is concave w.r.t. r; and continuous w.r.t. 7, | # i.
Hence, a Nash Equilibrium (NE) exists [31]. We note that the objec-
tive function n; of the centralized power allocation problem (10) is
equivalent to the sum of the utility functions U; of the I cells.

6.2. Super-modular games

Super-modular games exhibit strategic complementarity i.e., the
marginal utility for a player in playing a higher strategy increases
when the opponents also play higher strategy [32]. These games
encompass many applied models, and they are characterized by
the existence of pure strategy NE. Before presenting the properties
of a super-modular game, we list first the following definition:

Definition 6.1. If U; is twice differentiable, it is said to be super-
modular if:

ay;
87'[[877.'1'

>0,VI EI—{i},VT[i eS,—.

According to Topkis [33], a game is super-modular if Vi € Z:

1. The strategy space S; is a compact sublattice of RN,
2. The utility function U; is super-modular.

In [33,34], proof is given for the following result in a super-
modular game:

- If we start with a feasible policy, then the sequence of best
responses monotonically converges to an equilibrium: it mono-
tonically increases in all components in the case of maximizing
in a super-modular game.

Proposition 6.2. The game G is a super-modular game.

The proof of this proposition is given in Appendix C.

To attain the NE of the game, we implement a best response
algorithm where in each round ¢, cell i strives to find, in paral-
lel for every RB n e N, the following optimal power level as a
response to 7w_;(t —1): 7 (t) = arg maxy, U;(7r;, w_;), s.t. 7w} € S;.

The resulting optimization problem for each cell i is as fol-
lows:

max]itmize U; (22a)

subject to: Z Tin < Prax, (22b)
neN

Tin = Tmin, YN €N (22¢)

6.3. Solving the decentralized power allocation problem

We use the subgradient projection method to solve the decen-
tralized power allocation problem (22). It is an iterative method
that starts with some initial feasible vector m; that satisfies con-
straints (22b) and (22c), and generates the next iteration by taking
a step along the subgradient direction of U; at m;. For each cell i,
iterations of the subgradient projection are given by:

U
87‘[,-,”

where the partial derivative of the objective function U; with
respect to 7;, is given by:

8Ui Gk,i,n

Tin(t+1) =70 (t) +8(t) x VYneN, (23)

OTin - G Gein \ (24)
i ke (No + Fi,n)(l + %&Eﬁ,") log <1 + 7?’)3!?;.";,")
Fn= Zni’,nGk.ihns VneN. (24b)
i'eT
(£~}

The scalar 4(t) > 0 is a small step size (e.g., §(t) = 0.001) cho-
sen appropriately Chiang [30] to guarantee the convergence of the
decentralized power allocation problem (22). Before updating the
variables m; ,(t + 1), we make sure that m; ,(t + 1) > m;, in order
to satisfy the constraints (22c). Moreover, if constraints (22b) are
not satisfied, we perform a projection on the feasible set Ppax,
which is straightforward for a simplex [35]. Then, we calculate the
power difference Arr;, which is the difference between the power
allocation vectors of the current and the previous iterations. It is
given by:

Ami(t+1) = [lmi(t + 1) — m O] (25)

As described in Algorithm 4, each cell i calculates m;,(t; +
1),Vne N, where t; is the iteration number for cell i. The
obtained power values are updated in accordance with the con-
straints (22b) and (22c). This procedure is repeated and the
number of iterations t; is incremented until Am;(t; + 1) becomes
less than €. The number of rounds required for all the cells to
converge is denoted by t. An additional round of power calculation
is performed for all the cells and t is incremented as long as
Am*(t + 1) >€, where m*(t) is the power allocation vector
obtained at the end of round t.
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Algorithm 4 Decentralized power allocation.

1: Parameters: the utility function U;, Vi € Z, the maximum power
per cell Ppax, and the minimum power per RB 7.

2: Initialization: set t=0, t;=0,VieZ, and 7;,(0) to some
positive value > 7, Vie Z,Vn e NV, such as >, ., 7 n(0) <
Prax, Vie T.

3: fori=1to |Z| do

forn=1to |N| do

Tin(t+1) < max (”mim Tia(t) +8(8) x au; )

i

if Zlﬂl i n(t;+ 1) > Pnax then

4
5

6: end for
7

8 Perform projection on simplex Ppnax
9

: end if
10: if Am;(t;+1) > € then
11: ti<—t+1
12: goto4
13: end if
14: wrE+1) <G 4+1),VneN
15: end for

16: if Ar*(t +1) > € then
17: t<—t+1

18: go to 3

19: end if

7. Performance evaluation

In this section, we evaluate the convergence and the perfor-
mance of the proposed centralized joint resource and power allo-
cation problem, and the decentralized power allocation approach.

7.1. Centralized resource and power allocation

To verify the convergence of the centralized solution, we con-
sider a multi-user OFDMA network, such as LTE/LTE-A networks,
that consists of seven adjacent hexagonal cells, with one UE served
by each cell. UE positions and radio conditions are randomly gen-
erated, and the initial power allocation for each RB equals 7,
(01 W). System bandwidth equals 5 MHz. Thus, 25 RBs are
available in each cell. The maximum transmission power per
cell Pnax is set to 43 dBm or 20 W. At the first iteration, the dual
variables Ay ;,(0),Vk e K(i),Vie Z,Vne N, and v;(0),VieZ, are
assigned initial positive values. The evolution of 77;; along with
the number of iterations is shown in Fig. 1(a), where 7;; is the
logarithm of the transmission power allocated by the cell i to the
RB 1. In addition, the number of primal iterations and the number
of dual iterations per round are shown in Fig. 1(b).

We notice that for the centralized power allocation approach,
the primal problem requires approximately 6000 iterations to
converge. As shown in Fig. 1(b), 1100 rounds are required to
reach the optimal values of the primal and the dual variables. The
zoomed box within Fig. 1(a) shows the evolution of 7;, versus
the number of primal iterations for a given round t. The values
of ;, are calculated using the dual variables obtained at the
round (t — 1). We also notice that the number of primal iterations
and the number of dual iterations decreases with the number of
rounds. When t increases, the impact of Lagrange prices Ay ;,(t)
and v;(t) on the primal variables calculation is reduced, and the
number of primal iterations required for the primal problem to
converge becomes lower. The same behavior is noticed for the
number of dual iterations when the number of rounds increases.

For the same simulated scenario, we also show the dual vari-
ables A ;, and v; versus the number of dual iterations in Fig. 2(a)
and (b), respectively. We notice that approximately 8000 iterations
are required for the dual problem to converge. At a given round ¢,
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Fig. 1. Primal variables and number of iterations.

the Lagrange prices Ay;, and v; are updated using the most recent
values of the primal variables. The zoomed boxes within Fig. 2(a)
and (b) show the evolution of Ay;, and v; versus the number
of iterations, respectively. These values are updated until AXy;,
and Av; become less than €. Convergence of the centralized power
allocation problem occurs when two conditions are satisfied: first,
the difference between the updated primal variables at round t
and their values at round (t —1) is less than €. Second, the
difference between the updated primal variables at round t and
their values at round (t — 1) is less than e.

7.2. Decentralized power allocation

The same scenario in Section 7.1 is also simulated in this
paragraph to evaluate the performance and convergence of the
decentralized power allocation approach. The evolution of the
downlink transmission power allocated by all the cells to a given
RB is shown in Fig. 3(a).

The initial value of the downlink transmission power allocated
to each RB equals m;, (0.1 W). This allocation satisfies the con-
straints of the minimal downlink transmission power per RB and
that of the maximum transmission power per cell. Each cell i seeks
maximizing its own utility function U; by adjusting the transmis-
sion power allocated to the available RBs. It also estimates the in-
terference due to the usage of the same RBs by the neighboring
cells. As shown in Fig. 3(a), each cell starts increasing the downlink
transmission power allocated to its RBs, and then the transmis-
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Fig. 2. Convergence of the dual variables.

sion power converges after a given number of iterations. At con-
vergence, the partial derivative of the objective function U; with
respect to 7;, becomes negligible. The difference between the up-
dated power allocation vector (71,73, ..., ;) at iteration (t +
1) and the power vector at iteration t becomes less than €.

We also show the evolution of the power vector differ-
ence Am;,VieZ, defined in (25) along with the number of
iterations in Fig. 3(b). The obtained curves show that Am;, Vie Z,
decreases when the number of iterations increases. The impact of
the subgradient projection iterations on the downlink transmission
power 7;,,VieZ, VneN, becomes smaller as more iterations
are performed. Power convergence is achieved when Am;, Vie Z,
becomes less than €. In fact, the utility function of each cell i is
maximized, and the amount by which the downlink transmission
power 7;, is modified becomes negligible.

7.3. Comparison with state-of-the-art resource allocation approaches

We also compare the performance of our proposed centralized
and decentralized resource and power allocation approaches with
that of state-of-the-art resource and power allocation approaches
[36] such as the frequency reuse-1 model, the frequency reuse-3
model, FFR, SFR, and a single cell resource and power allocation
approach [12]. Note that our centralized approach searches for
the optimal resource and power allocation. It is considered as a
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Fig. 3. Convergence of the transmission power for the decentralized approach.

reference approach when comparing the performance of heuristic
algorithms and distributed approaches.

The frequency reuse-1 model allows the usage of the same
frequency spectrum simultaneously in all the network -cells.
Moreover, homogeneous power allocation is performed. In the
frequency reuse-3 model, one third of the available spectrum is
used in each cell in a cluster of three adjacent cells. Interference
problems are eliminated, but the spectral efficiency is reduced.
FFR and SFR techniques divide each cell into a cell-center and a
cell-edge zones, and set restrictions on resource usage and power
allocation in each zone. For all the compared techniques, resource
allocation is performed according to Theorem 5.1.

7.3.1. Spectral efficiency

We investigate the impact of the compared techniques on the
spectral efficiency. Simulation results, including the 95% confidence
interval, are shown in Fig. 4(a).

Our proposed centralized resource allocation approach offers
the highest spectral efficiency, since the optimal resource and
power allocation is guaranteed. The spectral efficiency of our de-
centralized approach is slightly lower than that of the centralized
approach, due to the lack of information about resource usage
in the neighboring cells. Nevertheless, the spectral efficiency for
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both the centralized and the decentralized approaches is greater
than that of FFR, SFR, and the single-cell resource and power
allocation approach [12] displayed as “One Cell” in Fig. 4. In fact,
the static resource allocation between cell zones, and the quan-
tified transmission power levels do not allow performing flexible
resource allocation in a manner that satisfies UE needs in each
cell. Concerning the single-cell approach, it does not take inter-cell
interference problems into account; however, its spectral efficiency
is slightly higher than that of reuse-1 model because it searches
for the optimal resource and power allocation locally in each cell.

7.3.2. Objective function

We also compare the objective function n; given in (6a) for
the different resource and power allocation techniques. Simulation
results are shown in Fig. 4(b).

We notice that our centralized approach shows the highest
objective function 1;. In fact, it finds the optimal power allocation
for the entire system, while taking into account constraints related
to resource usage and to the maximum downlink transmission

Table 2

Median number of operations per ap-

proach.
Approach Number of operations
Centralized 3.02 - 108
Decentralized  8.84 - 10°

power per cell. It outperforms the decentralized approach where
each cell strives to maximize its own utility function indepen-
dently of the other cells, and the single-cell approach where
inter-cell interference problems are not taken into account when
solving the resource and power allocation problem.

7.4. Centralized versus decentralized complexity comparison

We evaluate the computational complexity of our centralized
and decentralized resource and power allocation approaches. For
the centralized and decentralized approaches, resource allocation
is performed according to Theorem 5.1, and it is equivalent to one
operation. The complexity of each approach equals the number
of required operations multiplied by the complexity of a single
operation, denoted by Top. The complexity of the centralized
approach is given by:

O[ (bprimat x IA] x (14 k) +nbgyar x (1+k x [N])) x |Z] x Top].
(26)

Similarly, the decentralized approach complexity is given as
follows:

O(bjgerations % |Z| x [N x Top). (27)

where nbyim, is the number of primal iterations and nbg, is the
number of dual iterations required for convergence of the central-
ized approach. k is the number of UEs per cell, and nbjserations 1S the
number of iterations required for convergence of the decentralized
approach.

We notice that the decentralized approach complexity is
independent of the number of UEs per cell, contrarily to the cen-
tralized approach. The complexity of both techniques depends of
the number of cells in the system and the number of RBs available
in each cell. Moreover, the computational complexity of these
approaches are evaluated under the same simulation scenario as
in Section 7.1. The median number of operations required for the
centralized and decentralized approaches are given in Table 2.

According to the results reported in Table 2, the number of op-
erations required for the centralized resource and power allocation
approach largely exceeds that of the decentralized approach. In
fact, the centralized approach maximizes the objective function for
the entire network, contrarily to the decentralized approach where
each cell maximizes its objective function independently of the
other cells. Therefore, the centralized approach guarantees the op-
timal solution at the expense of a high computational complexity.

8. Conclusion

Resource and power allocation problem is a challenging
problem for nowadays and future wireless networks. Several
state-of-the-art techniques consider the joint resource and power
allocation problem, and formulate it as nonlinear optimization
problems. The objective consists in maximizing system through-
put, spectral efficiency, or energy efficiency under constraints
related to the minimum throughput per UE, QoS parameters, and
the maximum transmission power. However, these techniques
fall short from considering the impact of inter-cell interference.
Indeed, each cell solves its own resource and power allocation
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problem without taking into account resource usage and power
allocation in the neighboring cells.

In this article, we formulated the joint resource and power
allocation problem for multiuser OFDMA networks as a cen-
tralized optimization problem, where the objective consists in
maximizing system throughput while guaranteeing throughput
fairness between UEs. The joint problem is then decomposed
into two independent problems: a resource allocation problem
and a power allocation problem. Contrarily to the majority of the
state-of-the-art approaches, ICI is not neglected, and the impact of
the simultaneous transmissions in the neighboring cells is taken
into account when managing the resource and power allocation.
Moreover, we introduced a decentralized power allocation ap-
proach based on game theory. The players are the cells, and each
cell aims at maximizing its own utility function regardless of the
decisions made by the other cells. Simulation results prove the
convergence of our proposed approaches, and show the positive
impact of our centralized and decentralized resource allocation
approaches on system performance. In a future work, we will con-
sider the formulation of a multi-cell and multi-objective resource
and power allocation problem, where we address the compromise
between spectral efficiency and energy efficiency.

Appendix A. Upper bound of the objective functions difference

Given Jensen’s inequality and the concavity of the logarithmic
function, we have:

> onen Okn-Prin > nen log (Qk.npk,i.n)
log e e = (28a)
( IV IV
-lo O - i
o tog (3 O prin ) = % (en-Prin) + log (IN)),
IV
neN
(28b)
the objective function 7 can be written as:
n= Z Z log <Z Hk,nvok,i,n)
i€ keK(i) neN
1
2 5 2 2 2108 (BnPrin) + IKI log (IND). (29)
ieZ kek (i) neN
Since L and |K|.log (|\V|) are constant terms, maximizing the

Ry
objective function of problem (4) is achieved by maximizing the
following term:

Z Z Zlog (9k,n-,0k,i,n)

ieZ kek (i) neN

- Z Z Z (log (Qk,n) +log (,ok,l-y,.,))l (30)

ieZ keK (i) neN

In order to decompose the joint problem into two independent
problems, we evaluate the gap between the original objective func-
tion 1 and the function given in (30). It is evident that there exists
a gap between our objective function n and the function (30) that
we will maximize in the following sections. However, maximizing
these two functions is equivalent as long as the gap between them
is bounded. For this reason, we demonstrate the existence of a

finite upper bound on the following difference:

0 <log <Z 9k,n~pk,i,n) - Z log (ek,nvok,i,n) <B. (31)

neN neN

Let ¢n =6 n.Oxin > 0. and suppose that a < ¢, < b. Thus, there
exists 0 <yn <1 such that ¢, = ypa+ (1 — yn)b.

log (Z ¢n> — Y _log (¢n)

neN neN

= log (Z (yna+(1- Vn)b)) =Y " log (yaa+ (1 - ¥)b)

neN neN

<log (Z (yna+ (1 - yn)b)) — Y (yalog(a)+ (1 - yn)log (b))

neN neN

=log (a(z )/n) + b(INI -3 (w))) —log (a)(Z yn>
neN neN neN
—log (b)<|/\/| - (yn))-

neN

Taking p=>,.nva and q=[N| =3,y ¥a, We have 0 <p < |N]|,
0 < q < |V, and p+ q = |N]. Consequently, we have:

log (Z ¢n> — > log (¢n)

neN neN
< log (ap + bq) — plog (a) — qlog (b)
< mgx(log (ap+b(|N| - p)) — plog (a) — (IN| - p)log (b)) = B.

For fixed a and b, let us denote:

g(p) =log (ap + b(|N| - p)) — plog (a) — (IN| — p) log (b).

g is defined, differentiable, and concave on [0, |N]|]. Its first
derivative is given by:
a-b
ap+b(IN| - p)
g(p) attains its maximal value B for a p, that satisfies: g’ (py) = 0.

Thus, we have B = g(po), where py is given by:

S B

“log(a) —log(b)  b—a’

Therefore, the considered difference is bounded by B, which is a
finite bound.

g = — log (a) +log (b).

Do

Appendix B. Proof of Theorem 5.1

We consider the objective function (12a), which can be written
as follows:

(m)i= Y. Y log(6cn)

keK (i) neN'
=log| [] kn |- (32)
kek (i)

neN

Since the logarithmic function is monotonically increasing, the
maximization of (7,); becomes equivalent to the maximization of

the term [Jrexc(i) Ok n- We consider the following cases:
neN

1. Let us assume that:
> On<) bin Yk ek(i), Ve N. (33)
keKk (i) neN

We suppose that 6 ,,V ke K(i),VneN is an optimal solu-
tion to the resource allocation problem (12) i.e., this solution
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maximizes the objective function (12a). For this solution, we
assume that:

Ak e KA)/ Y b < 1. (34)
neN
We define € > 0 as follows:
e=1- 29,(1,1,
neN

and we demonstrate that this solution is not an optimal solu-
tion to problem (12) using the proof by contradiction. In fact,
we define a set of ¢, = variables as given in the following:

VneN, n#n,VkekK()

0/ — Qk,ny
k.n Opn+e, ifn=ny, VkeK(3).

Therefore, we have:

l_[ elén = l_[ ek,n +€- 1_[ ek,n > 1_[ ek,ns
kek (i) kek (i) kek (i) kek (i)

neN neN neN neN

and the assumption made in (34) is false, since it does not
maximize the objective function (12a). Consequently, we have:

D On = 1.V k € K(i)

nexN
= Z ng.n = [K®].

kek (i) neN

Since the sum of all the 6, variables is constant, the
term [iex()Okn Teaches its maximum when all the vari-

ne.
ables 6y, are equal i.e.,

kGl 1 .
Oppn=—->r —=-—— VkeK(i),VneN,
kn = TR IN] A KR @ Ve

which is an optimal solution to the resource allocation prob-
lem (12). According to (33):

> Okn<) Okn Yk €eK(i), Vne N
kek (i) neN

K@)
™ <1
= [KD] < V]

2. Similarly when:

> On< Y On Vk €k(i). Ve N (35)

neN keK (i)

In this case, the optimal solution is given by:

_ |V 1
OIS0

0 VkeK@i),VneN.

Appendix C. Proof of Proposition 6.2

To prove the super-modularity of the present game, we need
to verify the conditions in 6.2. First, the strategy space S; is obvi-
ously a compact convex set of RN. Hence, it suffices to verify the
super-modularity of the utility function as there are no constraint
policies for G:

Wi,

877,'[1“87[[,“ -

1 Gk,i,nGk,l.n Ok.in
lOg (1 + Uk,i,n) (No + Zi’#.i jTi’,nGk.i’.n)z lOg (1 + ak,i,n)

U

>]f°”‘>0'm

Asm >0,VleZ-{i}and VneN.
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