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a b s t r a c t 

The exponential growth in the usage of mobile networks along with the increasing number of User 

Equipments (UEs) are exacerbating the scarcity of frequency resources. Dense frequency reuse on the 

downlink of multiuser Orthogonal Frequency Division Multiple Access networks leads to severe Inter- 

Cell Interference (ICI) problems. Resource and power allocation techniques are required to alleviate the 

harmful impact of ICI. Contrarily to the existing techniques that consider single-cell resource and power 

allocation problem without taking ICI into account, we formulate a centralized downlink multi-cell joint 

resource and power allocation problem. The objective is to maximize system throughput while guaran- 

teeing throughput fairness between UEs. We demonstrate that the joint problem is separable into two 

independent problems: a resource allocation problem and a power allocation problem. Lagrange duality 

theory is used to solve the centralized power allocation problem. We also tackle the resource and power 

allocation problem differently by addressing it in a decentralized manner. We propose a non-cooperative 

downlink power allocation approach based on game theory. The players are the base stations, and each 

base station seeks to maximize its own utility function. We investigate the convergence of our proposed 

centralized and decentralized approaches, and we compare their performance with that of state-of-the- 

art approaches. 

© 2017 Published by Elsevier B.V. 
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1. Introduction 

Multiuser Orthogonal Frequency Division Multiple Access

(OFDMA) networks, such as the Third Generation Partnership

Project (3GPP) Long Term Evolution (LTE) [1] and LTE-Advanced

(LTE-A) [2] networks, are able to avoid the negative impact of

multipath fading and intra-cell interference, by virtue of the

orthogonality between subcarrier frequencies. Nevertheless, Inter-

Cell Interference (ICI) problems arise on the downlink of dense

frequency reuse networks due to simultaneous transmissions on

the same frequency resources. System performance is interference-

limited, since the achievable throughput is reduced due to ICI. 

Fractional Frequency Reuse (FFR) [3] and Soft Frequency Reuse

(SFR) [4] were introduced to avoid the harmful impact of ICI

on system performance, by applying static rules on Resource

Block (RB) usage and power allocation between cell-center and
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ell-edge users. Heuristic Inter-Cell Interference Coordination

ICIC) techniques are proposed to achieve ICI mitigation without

evere degradation of the overall system throughput. For instance,

uthors of [5,6] propose suboptimal solution for the resource

llocation problem. The objective is to minimize ICI by exploiting

ser Equipment (UE) diversity to maximize system throughput.

hey propose a two-level algorithm that operates at the evolved-

odeBs (eNodeBs) and at a central controller connected to several

NodeBs. In [7] , a heuristic power allocation algorithm is intro-

uced to reduce energy consumption and to improve cell-edge

Es throughput. It has been proven that the proposed algorithm

educes power consumption without reducing the achievable

hroughput. Moreover, it mitigates ICI and increases the achievable

hroughput for cell-edge UEs. 

Beside heuristic resource and power allocation algorithms

8] , convex optimization is used to improve the performance of

ultiuser OFDMA networks, and to alleviate the negative impact

f ICI on UE throughput. Resource and power allocation problem

s usually formulated as nonlinear optimization problem, where

he objective consists in maximizing system throughput, spectral

http://dx.doi.org/10.1016/j.comcom.2017.04.002
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fficiency, or energy efficiency, with constraints on the minimum

hroughput per UE or other Quality of Service (QoS) parameters

9] . The exponential growth in the usage of mobile networks along

ith the increasing number of UEs are exacerbating the scarcity

f frequency resources. 

The majority of state-of-the-art contributions formulate the

esource and power allocation problem for a single cell network

10–12] , or do not consider the impact of ICI on system per-

ormance. For instance, the tradeoff between spectral efficiency

nd energy efficiency is addressed in [12] , and a low-complexity

uboptimal algorithm is proposed to allocate RBs for practical

pplications of the tradeoff. However, the system model consists

f a single cell OFDMA network, where one subcarrier is assigned

o at most one UE. Therefore, ICI problems are not considered. In

his article, we formulate the joint resource and power allocation

roblem for the downlink of multiuser OFDMA networks, as a cen-

ralized multi-cell optimization problem. Inter-cell interference is

aken into account, and throughput fairness between the different

sers is guaranteed. We prove that our joint problem is separable

nto two independent optimization problems: a resource allocation

roblem and a power allocation problem. Our objective is to

aximize system throughput, while satisfying constraints related

o resource usage, Signal-to-Interference and Noise Ratio (SINR),

nd power allocation. We also propose a decentralized power allo-

ation approach that does not rely on centralized controllers. Each

ase station maximizes its own utility function in a distributed

anner. We evaluate the performance of the proposed approaches,

nd we compare their performance with state-of-the-art resource

nd power allocation approaches. 

The remainder of this article is organized as follows. In

ection 2 , we describe the limitations of the existing state-of-the-

rt approaches. In Section 3 , system model is presented followed

y our joint resource and power allocation problem formulation.

he joint problem is decomposed into two independent problems

n Section 4 : a resource allocation problem and a power allocation

roblem. We also demonstrate the convexity of the formulated

roblems. In Section 5 , we solve both resource and power alloca-

ion problems using the Lagrange duality theory. Our decentralized

ower allocation approach is introduced in Section 6 . Then, we in-

estigate the convergence of the centralized and the decentralized

pproaches in Section 7 , where we also provide comparisons with

ther approaches. Section 8 concludes this article and summarizes

ur main contributions. 

. Related work 

.1. State-of-the-art contributions 

For a given multiuser OFDMA network, resource and power

llocation problem is formulated as a centralized optimization

roblem [10–12] . Centralized inter-cell coordination is therefore

equired to find the optimal solution, where the necessary infor-

ation about SINR, power allocation, and resource usage are sent

o a centralized coordination entity. 

In [13] , the multi-cell optimization problem is decomposed

nto two distributed optimization problems. The objective of the

rst problem is to minimize the transmission power allocated

or cell-edge UEs, while guaranteeing a minimum throughput for

ach UE. RB and power are allocated to cell-edge UEs so that

hey satisfy their minimum required throughput. The remaining

Bs and the remaining transmission power are uniformly allo-

ated to cell-center UEs. At this stage, the second problem aims

t finding the resource allocation strategy that maximizes the

chievable throughput for cell-center UEs. An improved version of

his adaptive ICIC technique is proposed in [14] , where resource

llocation for cell-edge UEs is performed depending on their
ndividual channel conditions. However, the main disadvantage

f this adaptive ICIC technique and the proposed improvement

s that they do not consider the impact of ICI between adjacent

ells when power allocation is performed. Each cell solves its own

ptimization problem without requesting additional information

rom its neighboring cells. 

Resource and power allocation for a cluster of coordinated

FDMA cells are studied in [15] . Energy efficiency is maximized

nder constraints related to the downlink transmission power.

owever, noise-limited regime is considered, and ICI is neglected.

oreover, energy-efficient resource allocation for OFDMA systems

s investigated in [16] , where generalized and individual energy

fficiencies are defined for the downlink and the uplink of the

FDMA system, respectively. Properties of the energy efficiency

bjective function are studied, then a low-complexity suboptimal

lgorithm is introduced to reduce the computational burden of

he optimal solution. Subcarrier assignment is made easier using

euristic algorithms. Authors of [17] consider the joint resource

llocation, power allocation, and Modulation and Coding Scheme

MCS) selection problem. The joint optimization problem is sep-

rated into resource allocation and power allocation problems,

nd suboptimal algorithms are proposed. Another low complexity

uboptimal resource allocation algorithm is proposed in [18] . The

bjective consists in maximizing the achievable throughput, under

onstraints related to resource usage in the different cells. Coop-

ration between adjacent cells is needed. A multi-cell resource

llocation approach for OFDMA systems with decode-and-forward

elaying is proposed in [19] , where an interference constraint

s introduced along with time sharing variables. Although this

pproach guarantees throughput fairness between the different

sers, the spectral efficiency is reduced since the cells are not

llowed to use the available spectrum during 100% of the time

ue to time sharing between base stations and relays. 

Minimizing energy consumption and maximizing spectral 

fficiency in multiuser OFDMA networks cannot be achieved si-

ultaneously. Energy-bandwidth tradeoff is studied in [20] , where

uthors consider the total energy consumption versus the end-to-

nd rate in wireless multihop networks. For an arbitrary placement

f wireless nodes, resource and power allocation that minimizes

he energy level required to achieve a given data rate is found.

owever, interference-free resource allocation is considered, and

he impact of ICI on system performance is not taken into account.

.2. Our contributions 

The majority of state-of-the-art contributions that formulate

pectral efficiency or energy efficiency problems as centralized

ptimization problems, neglect the impact of ICI on system per-

ormance [10–12] , or introduce suboptimal approaches to solve

esource and power allocation problems [21–23] . Moreover, perfor-

ance comparisons are not made with other distributed heuristic

CIC algorithms, that are usually characterized by a lower compu-

ational complexity. In our work, we consider the multi-cell down-

ink resource and power allocation problem, where the objective

s to maximize system throughput while guaranteeing throughput

airness between the different UEs. Moreover, ICI is taken into

ccount when solving the centralized resource and power alloca-

ion problem. We also formulate a decentralized non-cooperative

ower allocation approach based on game theory. The players are

he cells, and each cell seeks maximizing its own utility function

ndependently of the other cells in the network. We investigate the

onvergence of both centralized and decentralized approaches, and

e compare their performance with that of the frequency reuse-1

odel, the frequency reuse-3 model, FFR, and SFR techniques. Our

ajor contributions are summarized as follows: 
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Table 1 

Sets, parameters and variables in the article. 

i Index of cell 

k Index of UE 

n Index of RB 

I Set of cells 

K Total set of UEs 

K(i ) Set of UEs associated to cell i 

N Set of RBs 

ρk,i,n Peak rate of UE k associated with RB n on cell i 

π i,n Transmit power of cell i on RB n 

G k,i,n Channel gain for UE k over RB n on cell i 

N 0 Thermal noise density 

θ k,n Percentage of time UE k is associated with RB n 

η Total system achievable mean rate 

σ k,i,n SINR for UE k over RB n on cell i 

P max Maximum DL transmission power per cell 

πmin Minimum DL transmission power per RB 

I ′ (i ) Set of neighboring cells for cell i 
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• Propose an original formulation of the centralized joint re-

source and power allocation problem: instead of considering

a single cell OFDMA network, we formulate our problem for a

multi-cell OFDMA network, taking ICI problems into account.

The objective is to maximize the mean rate per UE, and ensure

a proportional fair rate for all the active UEs. 

• Decompose the joint downlink resource and power allocation

problem into two independent problems, and solve the central-

ized power allocation problem using Lagrange duality theory

and subgradient projection method. 

• Formulate a novel decentralized super-modular game for re-

source and power allocation, and propose a best response

algorithm to attain the Nash Equilibrium. Then, solve the

decentralized power allocation problem using subgradient

projection method. 

• Validate the convergence of the proposed centralized and

decentralized approaches and evaluate their performance in

comparison with broadly adopted state-of-the-art approaches. 

3. System model and problem formulation 

3.1. System model 

We consider the downlink of a multiuser OFDMA system that

consists of I adjacent cells and K active UEs. Let I = { 1 , 2 , . . . , I}
denote the set of cells, and K = { 1 , 2 , . . . , K} the total set of active

UEs. We also define K ( i ) as the number of UEs served by cell i .

Thus, we have 
∑ I 

i =1 K(i ) = K. The set of available RBs in each cell

is denoted by N = { 1 , 2 , . . . , N} . 
In OFDMA networks, system spectrum is divided into several

channels, where each channel consists of a number of consecutive

orthogonal OFDM subcarriers [24] . An RB is the smallest schedul-

ing unit. It consists of 12 consecutive subcarriers in the frequency

domain, and seven OFDM symbols with normal cyclic prefix in

the time domain [25] (or six OFDM symbols with extended cyclic

prefix). Frequency resources are allocated to UEs each Transmit

Time Interval (TTI), which is equal to 1 ms. When the frequency

reuse-1 model is applied along with homogeneous power alloca-

tion, each RB is allocated the same downlink transmission power
P max 

N , where P max denotes the maximum downlink transmission

power per cell. The signal to interference and noise ratio for a

UE k attached to cell i and allocated RB n is given by: 

σk,i,n = 

πi,n G k,i,n 

N 0 + 

∑ 

i ′ � = i πi ′ ,n G k,i ′ ,n 
, (1)

where π i,n is the downlink transmission power allocated by cell i

to RB n, G k,i,n denotes channel gain for UE k attached to cell i

and allocated RB n , and N 0 is the thermal noise power. Indexes

i and i ′ refer to useful and interfering signals respectively. In our

work, we rely on perfect channel state information to infer the

SINR. Authors of [26] provide models to account for imperfect

channel state and study the impact on energy efficiency. Notations,

symbols, parameters, and variables used within this document are

reported in Table 1 . 

3.2. Problem formulation 

3.2.1. Centralized multi-cell optimization problem 

We define θ k,n as the percentage of time during which UE k is

associated with RB n . θk,n , ∀ k ∈ K, ∀ n ∈ N , and πi,n , ∀ i ∈ I, ∀ n ∈ N ,

are the optimization variables of the joint resource and power

allocation problem. Our objective is to manage resource and power

allocation in a manner that maximizes system throughput and

guarantees throughput fairness between the different UEs. The

standard approach is to have integer scheduling variables, while

in our problem formulation, θ k,n and π i,n are continuous variables.
n fact, using continuous variables will decrease the computation

ime and the complexity of the problem without losing generality.

 simple way of implementing the solution is to extend the

ound–Robin scheduler in a way to allocate equal time shares to

he users in the cell on each RB. 

The peak rate of UE k when associated with RB n on cell i is

iven by: 

k,i,n = log 

(
1 + 

πi,n G k,i,n 

N 0 + 

∑ 

i ′ � = i πi ′ ,n G k,i ′ ,n 

)
. (2)

hen, the mean rate of UE k is given by: ∑ 

 ∈N 

(
θk,n .ρk,i,n 

)
= 

∑ 

n ∈N 

(
θk,n . log 

(
1 + 

πi,n G k,i,n 

N 0 + 

∑ 

i ′ � = i πi ′ ,n G k,i ′ ,n 

))
. (3)

ur centralized multi-cell joint resource and power allocation

roblem seeks rate maximization in a proportional fair manner.

e make use of the logarithmic function that is intimately asso-

iated with the concept of proportional fairness [27] . Our problem

s formulated in the following: 

aximize 
θ, π

η

= 

∑ 

i ∈I 

∑ 

k ∈K(i ) 

log 

(∑ 

n ∈N 
θk,n . log 

(
1 + 

πi,n G k,i,n 

N 0 + 

∑ 

i ′ � = i πi ′ ,n G k,i ′ ,n 

))
(4a)

ubject to 

∑ 

k ∈K(i ) 

θk,n ≤ 1 , ∀ n ∈ N , (4b)

∑ 

 ∈N 
θk,n ≤ 1 , ∀ k ∈ K(i ) , (4c)

∑ 

 ∈N 
πi,n ≤ P max , ∀ i ∈ I, (4d)

i,n ≥ πmin , ∀ i ∈ I, ∀ n ∈ N , (4e)

 ≤ θk,n ≤ 1 , ∀ k ∈ K(i ) , ∀ n ∈ N . (4f)

The objective function η ensures a proportional fair rate for all

Es in the network. Constraints (4b) ensure that an RB is used

t most 100% of the time, and constraints (4c) ensure that a UE

hares its time on the available RBs. Constraints (4d) guarantee

hat the total downlink transmission power allocated to the
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vailable RBs does not exceed the maximum transmission power

 max for each cell i , and constraints (4e) represent the minimum

ower constraint of the transmit power allocated to each RB. In

act, the power allocated to each RB is larger than a predefined

alue denoted πmin , and the transmit power of cell i is lower than

 max . In practice, these bounds are related to hardware limitations.

k,n , ∀ k ∈ K, ∀ n ∈ N , and πi,n , ∀ i ∈ I, ∀ n ∈ N are the optimization

ariables of the joint resource and power allocation problem. 

In order to reduce the complexity of the joint resource and

ower allocation problem (4) , we prove that this problem is

eparable into two independent problems: a resource allocation

roblem and a power allocation problem. In fact, maximizing the

bjective function of problem (4) is achieved by maximizing the

ollowing term: 
 

i ∈I 

∑ 

k ∈K(i ) 

∑ 

n ∈N 

(
log 

(
θk,n 

)
+ log 

(
ρk,i,n 

))
. (5) 

he proof of this hypothesis is given in Appendix A . 

. Problem decomposition 

We tackle ICIC as an optimization problem, where we intend to

aximize the mean rate of UEs in a multiuser OFDMA system. We

onsider a system of I cells, having K ( i ) UEs per cell i . According

o (5) , and due to the absence of binding constraints, the opti-

ization problem (4) is linearly separable into two independent

roblems: a power allocation problem and a resource allocation

roblem. 

.1. Centralized multi-cell power allocation problem 

In the first problem, the optimization variable π is considered,

nd the problem is formulated as follows: 

aximize 
π

η
1 

= 

∑ 

i ∈I 

∑ 

k ∈K(i ) 

∑ 

n ∈N 
log 

(
log 

(
1 + 

πi,n G k,i,n 

N 0 + 

∑ 

i ′ � = i πi ′ ,n G k,i ′ ,n 

))
(6a) 

ubject to 

∑ 

n ∈N 
πi,n ≤ P max , ∀ i ∈ I, (6b) 

i,n ≥ πmin , ∀ i ∈ I, ∀ n ∈ N . (6c) 

Problem (6) consists in finding the optimal power allocation.

owever, it is not a convex optimization problem as formulated

n (6) . In the following, we introduce a variable change that allows

o formulate problem (6) as a convex optimization problem as

ollows: 

aximize 
ρ, π

η
1 

= 

∑ 

i ∈I 

∑ 

k ∈K(i ) 

∑ 

n ∈N 
log 

(
ρk,i,n 

)
(7a) 

ubject to ρk,i,n ≤ log 

(
1 + 

πi,n G k,i,n 

N 0 + 

∑ 

i ′ � = i πi ′ ,n G k,i ′ ,n 

)
, 

∀ i ∈ I, ∀ k ∈ K(i ) , ∀ n ∈ N , (7b) 

∑ 

 ∈N 
πi,n ≤ P max , ∀ i ∈ I, (7c) 

i,n ≥ πmin , ∀ i ∈ I, ∀ n ∈ N . (7d) 

Let us consider the following variable change: ̂ k,i,n = log 
(
exp 

(
ρk,i,n 

)
− 1 

)
, ∀ i ∈ I, ∀ k ∈ K(i ) , ∀ n ∈ N , (8a) 
̂ i,n = log (πi,n ) , ∀ i ∈ I, ∀ n ∈ N . (8b) 

Hence, the original variables are given by: 

k,i,n = log 
(
exp 

(̂ ρk,i,n 

)
+ 1 

)
, ∀ i ∈ I, ∀ k ∈ K(i ) , ∀ n ∈ N , (9a) 

i,n = exp ( ̂  πi,n ) , ∀ i ∈ I, ∀ n ∈ N . (9b) 

To show that the optimization problem (7) is a convex

ptimization problem, we need to show that the objective func-

ion is concave and the inequality constraint functions define

 convex set. After applying the variable change on peak rate

onstraints (7b) , they can be written as: 

k,i,n ≤ log 

(
1 + 

πi,n G k,i,n 

N 0 + 

∑ 

i ′ � = i πi ′ ,n G k,i ′ ,n 

)
, 

∀ i ∈ I, ∀ k ∈ K(i ) , ∀ n ∈ N 

⇒ log ( exp ( ̂  ρk,i,n ) + 1) ≤ log 

(
1 + 

exp ( ̂  πi,n ) G k,i,n 

N 0 + 

∑ 

i ′ � = i exp ( ̂  πi ′ ,n ) G k,i ′ ,n 

)
⇒ exp ( ̂  ρk.i.n ) + 1 ≤ 1 + 

exp ( ̂  πi,n ) G k,i,n 

N 0 + 

∑ 

i ′ � = i exp ( ̂  πi ′ ,n ) G k,i ′ ,n 

⇒ 

exp ( ̂  ρk.i.n ) . (N 0 + 

∑ 

i ′ � = i exp ( ̂  πi ′ ,n ) G k,i ′ ,n ) 

exp ( ̂  πi,n ) G k,i,n 

≤ 1 

⇒ log 

( 

exp ( ̂  ρk.i.n − ̂ πi,n ) 
N 0 

G k,i,n 

+ 

∑ 

i ′ � = i 
exp ( ̂  ρk.i.n + ̂

 πi ′ ,n − ̂ πi,n ) 
G k,i ′ ,n 
G k,i,n 

) 

≤ 0 , 

∀ i ∈ I, ∀ k ∈ K(i ) , ∀ n ∈ N . 

hese constraints are the logarithmic of the sum of exponential

unctions. Thus, they are convex functions [28] . When we apply

he variable change on power constraints (7c) , we get: ∑ 

 ∈N 
πi,n ≤ P max , ∀ i ∈ I 

⇒ log 

(∑ 

n ∈N 
exp ( ̂  πi,n ) 

)
− log ( P max ) ≤ 0 , ∀ i ∈ I. 

ince log ( �exp ) is convex [28] , the constraints at hand are

herefore convex. Using the variable change, the power allocation

roblem (7) can be written as follows: 

aximize ̂ ρ, ̂  π
η

1 
= 

∑ 

i ∈I 

∑ 

k ∈K(i ) 

∑ 

n ∈N 
log 

(
log 

(
exp 

(̂ ρk,i,n 

)
+ 1 

))
(10a) 

ubject to 

log 

( 

exp ( ̂  ρk.i.n − ̂ πi,n ) 
N 0 

G k,i,n 

+ 

∑ 

i ′ � = i 
exp ( ̂  ρk.i.n + ̂

 πi ′ ,n − ̂ πi,n ) 
G k,i ′ ,n 
G k,i,n 

) 

≤ 0 , 

∀ i ∈ I, ∀ k ∈ K(i ) , ∀ n ∈ N , (10b) 

og 

(∑ 

n ∈N 
exp ( ̂  πi,n ) 

)
− log ( P max ) ≤ 0 , ∀ i ∈ I, (10c) 

̂ i,n ≥ log ( πmin ) , ∀ i ∈ I, ∀ n ∈ N . (10d) 

The objective function of problem (10) is concave in 

̂ ρ and 

̂ π,

nd constraints (10b), (10c) , and (10d) are convex functions. Thus,

he power allocation problem is a convex optimization problem. 

.2. Centralized resource allocation problem 

The optimization variable θ is considered in the second

ptimization problem that is given in the following: 

aximize 
θ

η
2 

= 

∑ 

i ∈I 

∑ 

k ∈K(i ) 

∑ 

n ∈N 
log 

(
θk,n 

)
(11a) 
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subject to 

∑ 

k ∈K(i ) 

θk,n ≤ 1 , ∀ n ∈ N , (11b)

∑ 

n ∈N 
θk,n ≤ 1 , ∀ k ∈ K(i ) , (11c)

0 ≤ θk,n ≤ 1 , ∀ k ∈ K(i ) , ∀ n ∈ N . (11d)

As demonstrated for the power allocation problem (6) , we

prove that problem (11) is indeed a convex optimization prob-

lem in θ. The objective function (11a) of the resource allocation

problem (11) is concave in θ, since the log function is concave

for θ ∈ ]0; 1]. Moreover, constraints (11b), (11c) , and (11d) are

linear and separable constraints. Hence, the resource allocation

problem (11) is a convex optimization problem, and it is separable

into I subproblems. For each cell i , the i th optimization problem

is written as follows: 

maximize 
θ

( η2 ) i = 

∑ 

k ∈K(i ) 

∑ 

n ∈N 
log 

(
θk,n 

)
(12a)

subject to 

∑ 

k ∈K(i ) 

θk,n ≤ 1 , ∀ n ∈ N , (12b)

∑ 

n ∈N 
θk,n ≤ 1 , ∀ k ∈ K(i ) , (12c)

0 ≤ θk,n ≤ 1 , ∀ k ∈ K(i ) , ∀ n ∈ N . (12d)

5. Centralized multi-cell resource and power allocation 

As stated in the previous section and proven in Appendix A ,

the joint resource and power allocation problem (4) is separable

into two independent convex optimization problems: a power

allocation problem, and a resource allocation problem. In this

section, we solve the resource and power allocation problems

using Lagrange duality theory and subgradient projection method. 

5.1. Solving the centralized power allocation problem 

5.1.1. Lagrange-based method 

Since the power allocation problem (10) is a convex optimiza-

tion problem, we can make use of Lagrange duality properties,

which also lead to decomposability structures [29] . Lagrange

duality theory links the original problem, or primal problem , with

a dual maximization problem. The Lagrangian of problem (10) is

given as follows: 

L 
(̂ ρ, ̂  π, λ, ν

)
= 

∑ 

i ∈I 

∑ 

k ∈K(i ) 

∑ 

n ∈N 
log 

(
log 

(
exp 

(̂ ρk,i,n 

)
+ 1 

))
−

∑ 

i ∈I 

∑ 

k ∈K(i ) 

∑ 

n ∈N 
λk,i,n ( log ( exp ( ̂  ρk.i.n − ̂ πi,n ) 

N 0 

G k,i,n 

+ 

∑ 

i ′ ∈N 
i ′ � = i 

exp ( ̂  ρk.i.n + ̂

 πi ′ ,n − ̂ πi,n ) 
G k,i ′ ,n 
G k,i,n 

)) 

−
∑ 

i ∈I 
νi 

(
log 

(∑ 

n ∈N 
exp ( ̂  πi,n ) 

)
− log ( P max ) 

)
. (13)

The optimization variables ̂ ρ and 

̂ π are called the primal vari-

ables. λk,i,n and ν i are the dual variables associated with the ( k,

i, n )th inequality constraint (10b) and with the i th inequality

constraint (10c) , respectively. 

After relaxing the coupling constraints (10b) and (10c) , the

optimization problem separates into two levels of optimization:
ower level and higher level. At the lower level, L ( ̂  ρ, ̂  π, λ, ν) is the

bjective function to be maximized. ̂ ρk,i,n and 

̂ πi,n are the opti-

ization variables to be found. At the higher level, we have the

aster dual problem in charge of updating the dual variables λ
nd ν by solving the dual problem: 

inimize 
λ, ν

max ̂ ρ, ̂  π

(
L 
(̂ ρ, ̂  π, λ, ν

))
(14a)

ubject to λ ≥ 0 , (14b)

≥ 0 . (14c)

In order to solve the primal optimization problem (lower level

f optimization), we use the subgradient projection method. It

tarts with some initial feasible values of ̂ ρk,i,n and 

̂ πi,n that satisfy

he constraints (10d) . Then, the next iteration is generated by

aking a step along the subgradient direction of ̂ ρk,i,n and 

̂ πi,n .

or the primal optimization variables, iterations of the subgradient

rojection are given by: 

̂ k,i,n (t + 1) = 

̂ ρk,i,n (t) + δ(t) × ∂L 

∂ ̂  ρk,i,n 

, 

∀ k ∈ K(i ) , ∀ i ∈ I, ∀ n ∈ N , (15a)

̂ i,n (t + 1) = ̂

 πi,n (t) + δ(t) × ∂L 

∂ ̂  πi,n 

, ∀ i ∈ I, ∀ n ∈ N . (15b)

The scalar δ( t ) is a step size that guarantees the convergence

f the primal optimization problem [29] . The partial derivatives of

he objective function L ( ̂  ρ, ̂  π, λ, ν) with respect to ̂ ρk,i,n and 

̂ πi,n ,

re given in the following: 

∂L 

∂ ̂  ρk,i,n 

= 

exp 

(̂ ρk,i,n 

)(
exp 

(̂ ρk,i,n 

)
+ 1 

)
log 

(
exp 

(̂ ρk,i,n 

)
+ 1 

) − λk,i,n , 

∀ k ∈ K(i ) , ∀ i ∈ I, ∀ n ∈ N , (16a)

∂L 

∂ ̂  πi,n 

= 

∑ 

k ∈K(i ) 

λk,i,n − νi 

exp ( ̂  πi,n ) ∑ 

n ∈N 
exp ( ̂  πi,n ) 

, ∀ i ∈ I, ∀ n ∈ N . (16b)

The dual function g 
(
λ, ν

)
= max ̂ ρ, ̂  π

(
L 
(̂ ρ, ̂  π, λ, ν

))
is differ-

ntiable. Thus, at the higher optimization level, the master dual

roblem (14) can be solved using the following gradient method: 

k,i,n (t + 1) = λk,i,n (t) + δ(t)( log ( exp ( ̂  ρ� 
k.i.n − ̂ π� 

i,n ) 
N 0 

G k,i,n 

+ 

∑ 

i ′ ∈N 
i ′ � = i 

exp ( ̂  ρ� 
k.i.n + ̂

 π� 
i ′ ,n − ̂ π� 

i,n ) 
G k,i ′ ,n 
G k,i,n 

)) , 

∀ k ∈ K(i ) , ∀ i ∈ I, ∀ n ∈ N , (17a)

i (t + 1) = νi (t) + δ(t) 

(
log 

(∑ 

n ∈N 
exp 

(̂ π� 
i,n 

))
− log ( P max ) 

)
, 

∀ i ∈ I, ∀ n ∈ N , (17b)

here t is the iteration index, and δ( t ) is the step size at iteration t .

ppropriate choice of the step size [30] leads to convergence of

he dual algorithm. ̂ π� 
i,n 

and 

̂ ρ� 
k,i,n 

denote the solution to the

rimal optimization problem. When t → ∞ the dual variables λ( t )

nd ν( t ) converge to the dual optimal λ∗ and ν∗, respectively. The

ifference between the optimal primal objective and the optimal

ual objective, called duality gap , reduces to zero at optimality,

ince the problem (10) is convex and the KKT conditions are sat-

sfied. We define 
̂ ρ, 
̂ π, 
λ, and 
ν as the differences between
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he optimization variables obtained at the current iteration and

heir values at the previous iteration. They are given by: ̂ ρ(t + 1) = ‖ ̂

 ρ(t + 1) − ̂ ρ(t) ‖ , (18a) 

̂ π(t + 1) = ‖ ̂

 π(t + 1) − ̂ π(t) ‖ , (18b) 

λ(t + 1) = ‖ λ(t + 1) − λ(t) ‖ , (18c) 

ν(t + 1) = ‖ ν(t + 1) − ν(t) ‖ . (18d) 

.1.2. Iterative power allocation algorithm 

The procedure for solving the centralized power allocation

roblem is described in Algorithm 1 . Initially, the primal optimiza-

lgorithm 1 Dual algorithm for centralized power allocation. 

1: Parameters: the utility function L ( ̂  ρ, ̂  π, λ, ν) , P max , and πmin . 

2: Initialization: set t = t primal = t dual = 0 , and πi,n ≥ πmin , ∀ i ∈
I, ∀ n ∈ N , such as 

∑ 

n ∈ N πi,n ≤ P max , ∀ i ∈ I . Calculate ̂ πi,n (0)

and 

̂ ρk,i,n (0) accordingly, ∀ k ∈ K(i ) , ∀ i ∈ I, ∀ n ∈ N . 

3: Set λk,i,n (0) and νi (0) equal to some non negative value, ∀ k ∈
K(i ) , ∀ i ∈ I, ∀ n ∈ N . 

4: ( ̂  π� (t + 1) , ̂  ρ� (t + 1)) ← PrimalProblem ( ν� (t) , λ� 
(t) ) 

5: ( ν� (t + 1) , λ� 
(t + 1)) ← DualProblem ( ̂  π� (t + 1) , ̂  ρ� (t + 1) ) 

6: if (
̂ π� (t + 1) > ε) or (
̂ ρ� (t + 1) > ε) or (
ν� (t + 1) > ε) or

(
λ� 
(t + 1) > ε) then 

7: t ← t + 1 

8: go to 4 

9: end if 

ion variables ̂ ρk,i,n and 

̂ πi,n as well as the dual variables λk,i,n 

nd ν i start with some initial feasible values. t , t primal , and t dual 

enote the number of rounds required for the centralized power

llocation problem to converge, the number of iterations for

he primal problem, and the number of iterations for the dual

roblem, respectively. At each round t , we start by updating the

rimal optimization variables, using the PrimalProblem function

iven in Algorithm 2 . The solution to the primal optimization

lgorithm 2 Primal problem function. 

1: function PrimalProblem ( ν� (t) , λ� 
(t) ) 

2: for i = 1 to |I| do 

3: for n = 1 to |N | do 

4: ̂ πi,n (t primal + 1) ← max ( log (πmin ) ; ̂ πi,n (t primal ) + 

δ(t) × ∂L 
∂ ̂  πi,n 

) 

5: for k = 1 to |K(i ) | do 

6: ̂ ρk,i,n (t primal + 1) ← ̂

 ρk,i,n (t primal ) + δ(t) × ∂L 
∂ ̂  ρk,i,n 

7: end for 

8: end for 

9: end for 

10: if (
̂ π(t primal + 1) > ε) or (
̂ ρ(t primal + 1) > ε) then 

11: t primal ← t primal + 1 

12: go to 2 

13: end if 

14: return 

̂ π(t primal + 1) , ̂  ρ(t primal + 1) 

15: end function 

roblem at the current round t is denoted by ̂ π� 
i,n 

(t + 1) and̂ 

� 
k,i,n 

(t + 1) . The PrimalProblem function updates ̂ πi,n (t primal + 1)

nd 

̂ ρk,i,n (t primal + 1) , and increments t primal until 
̂ π(t primal + 1)

nd 
̂ ρ(t primal + 1) become less than ε. 
Then, the solution to the dual optimization problem at the

urrent round t , denoted by ν� 
i 
(t + 1) and λ� 

k,i,n 
(t + 1) is calculated

sing the DualProblem function given in Algorithm 3 . ν i and λk,i,n 

lgorithm 3 Dual problem function. 

1: function DualProblem ( ̂  π� (t + 1) , ̂  ρ� (t + 1) ) 

2: for i = 1 to |I| do 

3: νi (t dual + 1) ← max (0 ;νi (t dual ) + δ(t) ×
( log ( 

∑ 

n ∈N exp ( ̂  π� 
i,n 

(t + 1))) − log (P max ))) 

4: for n = 1 to |N | do 

5: for k = 1 to |K(i ) | do 

6: λk,i,n (t dual + 1) ← max (0 ;λk,i,n (t dual ) + δ(t) ×
( log ( exp ( ̂  ρ� 

k.i.n 
(t + 1) − ̂ π� 

i,n 
(t + 1)) 

N 0 
G k,i,n 

+ 

∑ 

i ′ ∈N 
i ′ � = i 

exp ( ̂  ρ� 
k.i.n 

(t + 

1) + ̂

 π� 
i ′ ,n (t + 1) − ̂ π� 

i,n 
(t + 1)) 

G 
k,i ′ ,n 

G k,i,n 
))) 

7: end for 

8: end for 

9: end for 

10: if (
ν(t dual + 1) > ε) or (
λ(t dual + 1) > ε) then 

11: t dual ← t dual + 1 

12: go to 2 

13: end if 

14: return ν(t dual + 1) , λ(t dual + 1) 

15: end function 

re updated using the obtained primal solution 

̂ π� 
i,n 

(t + 1) and̂ 

� 
k,i,n 

(t + 1) , until 
ν(t dual + 1) and 
λ(t dual + 1) become less

han ε. An additional round of calculations is performed, and t is

ncremented as long as 
̂ π� (t + 1) or 
̂ π� (t + 1) or 
ν� (t + 1) or

λ� 
(t + 1) is greater than ε. Otherwise, the obtained solution at

he current round is the optimal solution to the centralized power

llocation problem. 

.2. Solving the resource allocation problem 

In this subsection, we search for the optimal solution to the re-

ource allocation problem (12) . For each cell i , the problem (12) is

 convex optimization problem, as proven previously. 

heorem 5.1. For each cell i, the optimal solution to the resource

llocation problem (12) is given by: 

k,n = 

1 

max ( |K(i ) | , |N | ) , ∀ k ∈ K(i ) , ∀ n ∈ N . (19)

The proof of Theorem 5.1 is given in Appendix B . When

he number of active UEs is less than the number of avail-

ble resources, θk,n = 

1 
|N | , ∀ k ∈ K(i ) , ∀ n ∈ N . Thus, the available

esources are not fully used over time, and each UE is perma-

ently served. Otherwise, when |K(i ) | > |N | , the optimal solution

s: θk,n = 

1 
|K(i ) | , ∀ k ∈ K(i ) , ∀ n ∈ N . In this case, each RB is fully

sed over time, while UEs are not permanently served over time. 

. Decentralized resource and power allocation 

.1. Problem formulation and decomposition 

We have shown that the power allocation problem can be

olved optimally in a centralized fashion. The centralized approach

s the reference approach for performance comparison, since

t finds the optimal resource and power allocation for all the

ctive users. Nevertheless, the computational complexity of the

entralized approach motivates the introduction of low-complexity

ecentralized approaches. In this section we investigate the de-

entralized resource and power allocation approach. Base stations

f the LTE/LTE-A networks are autonomous entities, and each
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cell performs resource and power allocation independently of the

other cells. Each cell i maximizes its own utility function, which is

given by: ∑ 

k ∈K(i ) 

∑ 

n ∈N 
log 

(
θk,n . log 

(
1 + 

πi,n G k,i,n 

N 0 + 

∑ 

i ′ � = i πi ′ ,n G k,i ′ ,n 

))
= 

∑ 

k ∈K(i ) 

∑ 

n ∈N 
log 

(
θk,n 

)
+ 

∑ 

k ∈K(i ) 

∑ 

n ∈N 
log 

(
log 

(
1 + 

πi,n G k,i,n 

N 0 + 

∑ 

i ′ � = i πi ′ ,n G k,i ′ ,n 

))
. (20)

The decentralized joint resource and power allocation problem is

separable into two independent problems: a resource allocation

problem and a power allocation problem. The resource alloca-

tion problem is solved in a distributed manner as proven in the

previous section. We propose a decentralized power allocation

approach based on game theory, where the cells are the decision

makers or players of the game. We define a multi-player game

G between the |I| cells. The cells are assumed to make their

decisions without knowing the decisions of each other. 

The formulation of this non-cooperative game G = 〈 I, S, U 〉 can

be described as follows: 

• A finite set of cells I = (1 , . . . , |I| ) . 
• For each cell i , the space of pure strategies is S i given by what

follows: 

S i = { πi ∈ R |N | such as πi,n ≥ πmin , ∀ i ∈ I, ∀ n ∈ N , and 

∑ 

n ∈N 
πi,n ≤ P max , ∀ i ∈ I} . 
An action of a cell i is the amount of power π i,n allo-

cated to the RB n , and the strategy chosen by cell i is then

πi = (πi, 1 , . . . , πi,N ) . A strategy profile π = (π1 , . . . , π|I| ) speci-

fies the strategies of all players and S = S 1 × . . . × S |I| is the set

of all strategies. 

• A set of utility functions U = (U 1 (π ) , U 2 (π ) , . . . , U I (π )) that

quantify players’ utility for a given strategy profile π , where a

given utility U i for cell i is such as: 

U i = 

∑ 

k ∈K(i ) 

∑ 

n ∈N 
log 

(
log 

(
1 + 

πi,n G k,i,n 

N 0 + 

∑ 

i ′ � = i πi ′ ,n G k,i ′ ,n 

))
. (21)

For every i, U i is concave w.r.t. π i and continuous w.r.t. π l , l � = i .

Hence, a Nash Equilibrium (NE) exists [31] . We note that the objec-

tive function η1 of the centralized power allocation problem (10) is

equivalent to the sum of the utility functions U i of the I cells. 

6.2. Super-modular games 

Super-modular games exhibit strategic complementarity i.e ., the

marginal utility for a player in playing a higher strategy increases

when the opponents also play higher strategy [32] . These games

encompass many applied models, and they are characterized by

the existence of pure strategy NE. Before presenting the properties

of a super-modular game, we list first the following definition: 

Definition 6.1. If U i is twice differentiable, it is said to be super-

modular if: 

∂U i 

∂ πl ∂ πi 

≥ 0 , ∀ l ∈ I − { i } , ∀ πi ∈ S i . 

According to Topkis [33] , a game is super-modular if ∀ i ∈ I: 

1. The strategy space S i is a compact sublattice of R 

N . 

2. The utility function U i is super-modular. 

In [33,34] , proof is given for the following result in a super-

modular game: 
• If we start with a feasible policy, then the sequence of best

responses monotonically converges to an equilibrium: it mono-

tonically increases in all components in the case of maximizing

in a super-modular game. 

roposition 6.2. The game G is a super-modular game. 

The proof of this proposition is given in Appendix C . 

To attain the NE of the game, we implement a best response

lgorithm where in each round t , cell i strives to find, in paral-

el for every RB n ∈ N , the following optimal power level as a

esponse to π−i (t − 1) : π ∗
i 
(t) = arg max πi 

U i (πi , π−i ) , s.t. π
∗
i 

∈ S i . 

The resulting optimization problem for each cell i is as fol-

ows: 

aximize 
πi 

U i (22a)

ubject to: 
∑ 

n ∈N 
πi,n ≤ P max , (22b)

i,n ≥ πmin , ∀ n ∈ N . (22c)

.3. Solving the decentralized power allocation problem 

We use the subgradient projection method to solve the decen-

ralized power allocation problem (22) . It is an iterative method

hat starts with some initial feasible vector πi that satisfies con-

traints (22b) and (22c) , and generates the next iteration by taking

 step along the subgradient direction of U i at πi . For each cell i ,

terations of the subgradient projection are given by: 

i,n (t + 1) = πi,n (t) + δ(t) × ∂U i 

∂πi,n 

, ∀ n ∈ N , (23)

here the partial derivative of the objective function U i with

espect to π i,n is given by: 

∂U i 

∂πi,n 

= 

∑ 

k ∈K(i ) 

G k,i,n 

( N 0 + F i,n ) 

(
1 + 

πi,n G k,i,n 

N 0 + F i,n 

)
log 

(
1 + 

πi,n G k,i,n 

N 0 + F i,n 

) , (24a)

 i,n = 

∑ 

i ′ ∈I 
i ′ � = i 

πi ′ ,n G k,i ′ ,n , ∀ n ∈ N . (24b)

The scalar δ( t ) > 0 is a small step size ( e.g ., δ(t) = 0 . 001 ) cho-

en appropriately Chiang [30] to guarantee the convergence of the

ecentralized power allocation problem (22) . Before updating the

ariables πi,n (t + 1) , we make sure that πi,n (t + 1) ≥ πmin in order

o satisfy the constraints (22c) . Moreover, if constraints (22b) are

ot satisfied, we perform a projection on the feasible set P max ,

hich is straightforward for a simplex [35] . Then, we calculate the

ower difference 
π i , which is the difference between the power

llocation vectors of the current and the previous iterations. It is

iven by: 

πi (t + 1) = ‖ πi (t + 1) − πi (t) ‖ . (25)

As described in Algorithm 4 , each cell i calculates πi,n (t i +
) , ∀ n ∈ N , where t i is the iteration number for cell i . The

btained power values are updated in accordance with the con-

traints (22b) and (22c) . This procedure is repeated and the

umber of iterations t i is incremented until 
πi (t i + 1) becomes

ess than ε. The number of rounds required for all the cells to

onverge is denoted by t . An additional round of power calculation

s performed for all the cells and t is incremented as long as

π ∗(t + 1) > ε, where π ∗( t ) is the power allocation vector

btained at the end of round t . 
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Algorithm 4 Decentralized power allocation. 

1: Parameters: the utility function U i , ∀ i ∈ I , the maximum power 

per cell P max , and the minimum power per RB πmin . 

2: Initialization: set t = 0 , t i = 0 , ∀ i ∈ I , and πi,n (0) to some 

positive value ≥ πmin , ∀ i ∈ I, ∀ n ∈ N , such as 
∑ 

n ∈N πi,n (0) ≤
P max , ∀ i ∈ I. 

3: for i = 1 to |I| do 

4: for n = 1 to |N | do 

5: πi,n (t i + 1) ← max 

(
πmin ;πi,n ( t i ) + δ( t i ) × ∂U i 

∂πi,n 

)
6: end for 

7: if 
∑ |N | 

n =1 
πi,n (t i + 1) > P max then 

8: Perform projection on simplex P max 

9: end if 

10: if 
πi (t i + 1) > ε then 

11: t i ← t i + 1 

12: go to 4 

13: end if 

14: π ∗
i,n 

(t + 1) ← πi,n (t i + 1) , ∀ n ∈ N 

15: end for 

16: if 
π ∗(t + 1) > ε then 

17: t ← t + 1 

18: go to 3 

19: end if 
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Fig. 1. Primal variables and number of iterations. 
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. Performance evaluation 

In this section, we evaluate the convergence and the perfor-

ance of the proposed centralized joint resource and power allo-

ation problem, and the decentralized power allocation approach. 

.1. Centralized resource and power allocation 

To verify the convergence of the centralized solution, we con-

ider a multi-user OFDMA network, such as LTE/LTE-A networks,

hat consists of seven adjacent hexagonal cells, with one UE served

y each cell. UE positions and radio conditions are randomly gen-

rated, and the initial power allocation for each RB equals πmin 

0.1 W). System bandwidth equals 5 MHz. Thus, 25 RBs are

vailable in each cell. The maximum transmission power per

ell P max is set to 43 dBm or 20 W. At the first iteration, the dual

ariables λk,i,n (0) , ∀ k ∈ K(i ) , ∀ i ∈ I, ∀ n ∈ N , and νi (0) , ∀ i ∈ I, are

ssigned initial positive values. The evolution of ̂ πi, 1 along with

he number of iterations is shown in Fig. 1 (a), where ̂ πi, 1 is the

ogarithm of the transmission power allocated by the cell i to the

B 1. In addition, the number of primal iterations and the number

f dual iterations per round are shown in Fig. 1 (b). 

We notice that for the centralized power allocation approach,

he primal problem requires approximately 60 0 0 iterations to

onverge. As shown in Fig. 1 (b), 1100 rounds are required to

each the optimal values of the primal and the dual variables. The

oomed box within Fig. 1 (a) shows the evolution of ̂ πi,n versus

he number of primal iterations for a given round t. The values

f ̂ πi,n are calculated using the dual variables obtained at the

ound (t − 1) . We also notice that the number of primal iterations

nd the number of dual iterations decreases with the number of

ounds. When t increases, the impact of Lagrange prices λk,i,n ( t )

nd ν i ( t ) on the primal variables calculation is reduced, and the

umber of primal iterations required for the primal problem to

onverge becomes lower. The same behavior is noticed for the

umber of dual iterations when the number of rounds increases. 

For the same simulated scenario, we also show the dual vari-

bles λk,i,n and ν i versus the number of dual iterations in Fig. 2 (a)

nd (b), respectively. We notice that approximately 80 0 0 iterations

re required for the dual problem to converge. At a given round t ,
he Lagrange prices λk,i,n and ν i are updated using the most recent

alues of the primal variables. The zoomed boxes within Fig. 2 (a)

nd (b) show the evolution of λk,i,n and ν i versus the number

f iterations, respectively. These values are updated until 
λk,i,n 

nd 
ν i become less than ε. Convergence of the centralized power

llocation problem occurs when two conditions are satisfied: first,

he difference between the updated primal variables at round t

nd their values at round (t − 1) is less than ε. Second, the

ifference between the updated primal variables at round t and

heir values at round (t − 1) is less than ε. 

.2. Decentralized power allocation 

The same scenario in Section 7.1 is also simulated in this

aragraph to evaluate the performance and convergence of the

ecentralized power allocation approach. The evolution of the

ownlink transmission power allocated by all the cells to a given

B is shown in Fig. 3 (a). 

The initial value of the downlink transmission power allocated

o each RB equals πmin (0.1 W). This allocation satisfies the con-

traints of the minimal downlink transmission power per RB and

hat of the maximum transmission power per cell. Each cell i seeks

aximizing its own utility function U i by adjusting the transmis-

ion power allocated to the available RBs. It also estimates the in-

erference due to the usage of the same RBs by the neighboring

ells. As shown in Fig. 3 (a), each cell starts increasing the downlink

ransmission power allocated to its RBs, and then the transmis-
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Fig. 2. Convergence of the dual variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Convergence of the transmission power for the decentralized approach. 
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sion power converges after a given number of iterations. At con-

vergence, the partial derivative of the objective function U i with

respect to π i,n becomes negligible. The difference between the up-

dated power allocation vector (πi, 1 , πi, 2 , . . . , πi,N ) at iteration (t +
1) and the power vector at iteration t becomes less than ε. 

We also show the evolution of the power vector differ-

ence 
πi , ∀ i ∈ I, defined in (25) along with the number of

iterations in Fig. 3 (b). The obtained curves show that 
πi , ∀ i ∈ I,

decreases when the number of iterations increases. The impact of

the subgradient projection iterations on the downlink transmission

power πi,n , ∀ i ∈ I, ∀ n ∈ N , becomes smaller as more iterations

are performed. Power convergence is achieved when 
πi , ∀ i ∈ I,

becomes less than ε. In fact, the utility function of each cell i is

maximized, and the amount by which the downlink transmission

power π i,n is modified becomes negligible. 

7.3. Comparison with state-of-the-art resource allocation approaches 

We also compare the performance of our proposed centralized

and decentralized resource and power allocation approaches with

that of state-of-the-art resource and power allocation approaches

[36] such as the frequency reuse-1 model, the frequency reuse-3

model, FFR, SFR, and a single cell resource and power allocation

approach [12] . Note that our centralized approach searches for

the optimal resource and power allocation. It is considered as a
eference approach when comparing the performance of heuristic

lgorithms and distributed approaches. 

The frequency reuse-1 model allows the usage of the same

requency spectrum simultaneously in all the network cells.

oreover, homogeneous power allocation is performed. In the

requency reuse-3 model, one third of the available spectrum is

sed in each cell in a cluster of three adjacent cells. Interference

roblems are eliminated, but the spectral efficiency is reduced.

FR and SFR techniques divide each cell into a cell-center and a

ell-edge zones, and set restrictions on resource usage and power

llocation in each zone. For all the compared techniques, resource

llocation is performed according to Theorem 5.1 . 

.3.1. Spectral efficiency 

We investigate the impact of the compared techniques on the

pectral efficiency. Simulation results, including the 95% confidence

nterval, are shown in Fig. 4 (a). 

Our proposed centralized resource allocation approach offers

he highest spectral efficiency, since the optimal resource and

ower allocation is guaranteed. The spectral efficiency of our de-

entralized approach is slightly lower than that of the centralized

pproach, due to the lack of information about resource usage

n the neighboring cells. Nevertheless, the spectral efficiency for
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Fig. 4. Comparison with state-of-the-art approaches. 
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Table 2 

Median number of operations per ap- 

proach. 

Approach Number of operations 

Centralized 3.02 · 10 8 

Decentralized 8.84 · 10 5 

p  

e  

d  

i  

s

7

 

a  

t  

i  

o  

o  

o  

a

O

S  

f

O  

w  

n  

i  

n  

a

 

i  

t  

t  

i  

a  

i  

c

 

e  

a  

f  

t  

e  

o  

t

8

 

p  

s  

a  

p  

p  

r  

t  

f  

I  
oth the centralized and the decentralized approaches is greater

han that of FFR, SFR, and the single-cell resource and power

llocation approach [12] displayed as “One Cell” in Fig. 4 . In fact,

he static resource allocation between cell zones, and the quan-

ified transmission power levels do not allow performing flexible

esource allocation in a manner that satisfies UE needs in each

ell. Concerning the single-cell approach, it does not take inter-cell

nterference problems into account; however, its spectral efficiency

s slightly higher than that of reuse-1 model because it searches

or the optimal resource and power allocation locally in each cell. 

.3.2. Objective function 

We also compare the objective function η1 given in (6a) for

he different resource and power allocation techniques. Simulation

esults are shown in Fig. 4 (b). 

We notice that our centralized approach shows the highest

bjective function η1 . In fact, it finds the optimal power allocation

or the entire system, while taking into account constraints related

o resource usage and to the maximum downlink transmission
ower per cell. It outperforms the decentralized approach where

ach cell strives to maximize its own utility function indepen-

ently of the other cells, and the single-cell approach where

nter-cell interference problems are not taken into account when

olving the resource and power allocation problem. 

.4. Centralized versus decentralized complexity comparison 

We evaluate the computational complexity of our centralized

nd decentralized resource and power allocation approaches. For

he centralized and decentralized approaches, resource allocation

s performed according to Theorem 5.1 , and it is equivalent to one

peration. The complexity of each approach equals the number

f required operations multiplied by the complexity of a single

peration, denoted by T op . The complexity of the centralized

pproach is given by: 

 

[(
nb primal × |N | × (1 + k ) + nb dual × ( 1 + k × |N | ) ) × |I| × T op 

]
. 

(26) 

imilarly, the decentralized approach complexity is given as

ollows: 

 ( nb iterations × |I| × |N | × T op ) , (27)

here nb primal is the number of primal iterations and nb dual is the

umber of dual iterations required for convergence of the central-

zed approach. k is the number of UEs per cell, and nb iterations is the

umber of iterations required for convergence of the decentralized

pproach. 

We notice that the decentralized approach complexity is

ndependent of the number of UEs per cell, contrarily to the cen-

ralized approach. The complexity of both techniques depends of

he number of cells in the system and the number of RBs available

n each cell. Moreover, the computational complexity of these

pproaches are evaluated under the same simulation scenario as

n Section 7.1 . The median number of operations required for the

entralized and decentralized approaches are given in Table 2 . 

According to the results reported in Table 2 , the number of op-

rations required for the centralized resource and power allocation

pproach largely exceeds that of the decentralized approach. In

act, the centralized approach maximizes the objective function for

he entire network, contrarily to the decentralized approach where

ach cell maximizes its objective function independently of the

ther cells. Therefore, the centralized approach guarantees the op-

imal solution at the expense of a high computational complexity. 

. Conclusion 

Resource and power allocation problem is a challenging

roblem for nowadays and future wireless networks. Several

tate-of-the-art techniques consider the joint resource and power

llocation problem, and formulate it as nonlinear optimization

roblems. The objective consists in maximizing system through-

ut, spectral efficiency, or energy efficiency under constraints

elated to the minimum throughput per UE, QoS parameters, and

he maximum transmission power. However, these techniques

all short from considering the impact of inter-cell interference.

ndeed, each cell solves its own resource and power allocation
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problem without taking into account resource usage and power

allocation in the neighboring cells. 

In this article, we formulated the joint resource and power

allocation problem for multiuser OFDMA networks as a cen-

tralized optimization problem, where the objective consists in

maximizing system throughput while guaranteeing throughput

fairness between UEs. The joint problem is then decomposed

into two independent problems: a resource allocation problem

and a power allocation problem. Contrarily to the majority of the

state-of-the-art approaches, ICI is not neglected, and the impact of

the simultaneous transmissions in the neighboring cells is taken

into account when managing the resource and power allocation.

Moreover, we introduced a decentralized power allocation ap-

proach based on game theory. The players are the cells, and each

cell aims at maximizing its own utility function regardless of the

decisions made by the other cells. Simulation results prove the

convergence of our proposed approaches, and show the positive

impact of our centralized and decentralized resource allocation

approaches on system performance. In a future work, we will con-

sider the formulation of a multi-cell and multi-objective resource

and power allocation problem, where we address the compromise

between spectral efficiency and energy efficiency. 

Appendix A. Upper bound of the objective functions difference 

Given Jensen’s inequality and the concavity of the logarithmic

function, we have: 

log 

(∑ 

n ∈N θk,n .ρk,i,n 

| N | 
)

≥
∑ 

n ∈N log 
(
θk,n .ρk,i,n 

)
| N | (28a)

⇒ log 

(∑ 

n ∈N 
θk,n .ρk,i,n 

)
≥

∑ 

n ∈N log 
(
θk,n .ρk,i,n 

)
| N | + log ( |N | ) , 

(28b)

the objective function η can be written as: 

η = 

∑ 

i ∈I 

∑ 

k ∈K(i ) 

log 

(∑ 

n ∈N 
θk,n .ρk,i,n 

)
≥ 1 

|N | 
∑ 

i ∈I 

∑ 

k ∈K(i ) 

∑ 

n ∈N 
log 

(
θk,n .ρk,i,n 

)
+ |K| . log ( |N | ) . (29)

Since 1 
|N | and |K| . log ( |N | ) are constant terms, maximizing the

objective function of problem (4) is achieved by maximizing the

following term: 

∑ 

i ∈I 

∑ 

k ∈K(i ) 

∑ 

n ∈N 
log 

(
θk,n .ρk,i,n 

)
= 

∑ 

i ∈I 

∑ 

k ∈K(i ) 

∑ 

n ∈N 

(
log 

(
θk,n 

)
+ log 

(
ρk,i,n 

))
. (30)

In order to decompose the joint problem into two independent

problems, we evaluate the gap between the original objective func-

tion η and the function given in (30) . It is evident that there exists

a gap between our objective function η and the function (30) that

we will maximize in the following sections. However, maximizing

these two functions is equivalent as long as the gap between them

is bounded. For this reason, we demonstrate the existence of a
nite upper bound on the following difference: 

 ≤ log 

(∑ 

n ∈N 
θk,n .ρk,i,n 

)
−

∑ 

n ∈N 
log 

(
θk,n .ρk,i,n 

)
≤ B. (31)

et φn = θk,n .ρk,i,n > 0 , and suppose that a ≤ φn ≤ b . Thus, there

xists 0 ≤γ n ≤ 1 such that φn = γn a + (1 − γn ) b. 

og 

(∑ 

n ∈N 
φn 

)
−

∑ 

n ∈N 
log ( φn ) 

= log 

(∑ 

n ∈N 
( γn a + ( 1 − γn ) b ) 

)
−

∑ 

n ∈N 
log ( γn a + ( 1 − γn ) b ) 

≤ log 

(∑ 

n ∈N 
( γn a + ( 1 − γn ) b ) 

)
−

∑ 

n ∈N 
( γn log ( a ) + ( 1 − γn ) log ( b ) ) 

= log 

(
a 

(∑ 

n ∈N 
γn 

)
+ b 

(
|N | − ∑ 

n ∈N 
( γn ) 

))
− log ( a ) 

(∑ 

n ∈N 
γn 

)
− log ( b ) 

(
|N | − ∑ 

n ∈N 
( γn ) 

)
. 

aking p = 

∑ 

n ∈N γn and q = |N | − ∑ 

n ∈N γn , we have 0 ≤ p ≤ |N | ,
 ≤ q ≤ |N | , and p + q = |N | . Consequently, we have: 

og 

(∑ 

n ∈N 
φn 

)
−

∑ 

n ∈N 
log ( φn ) 

≤ log ( ap + bq ) − p log ( a ) − q log ( b ) 

≤ max 
p 

( log ( ap + b ( |N | − p ) ) − p log ( a ) − ( |N | − p ) log ( b ) ) = B. 

or fixed a and b , let us denote: 

(p) = log ( ap + b ( |N | − p ) ) − p log ( a ) − ( |N | − p ) log ( b ) . 

 is defined, differentiable, and concave on [0 , |N | ] . Its first

erivative is given by: 

 

′ (p) = 

a − b 

ap + b ( |N | − p ) 
− log ( a ) + log ( b ) . 

 ( p ) attains its maximal value B for a p 0 that satisfies: g ′ (p 0 ) = 0 .

hus, we have B = g(p 0 ) , where p 0 is given by: 

p 0 = 

1 

log (a ) − log (b) 
+ 

b. |N | 
b − a 

. 

herefore, the considered difference is bounded by B , which is a

nite bound. 

ppendix B. Proof of Theorem 5.1 

We consider the objective function (12a) , which can be written

s follows: 

(η
2 
) i = 

∑ 

k ∈K(i ) 

∑ 

n ∈N 
log 

(
θk,n 

)
= log 

⎛ ⎝ 

∏ 

k ∈K(i ) 
n ∈N 

θk,n 

⎞ ⎠ . (32)

ince the logarithmic function is monotonically increasing, the

aximization of (η
2 
) i becomes equivalent to the maximization of

he term 

∏ 

k ∈K(i ) 
n ∈N 

θk,n . We consider the following cases: 

1. Let us assume that: ∑ 

k ∈K(i ) 

θk,n < 

∑ 

n ∈N 
θk,n , ∀ k ∈ K(i ) , ∀ n ∈ N . (33)

We suppose that θk,n , ∀ k ∈ K(i ) , ∀ n ∈ N is an optimal solu-

tion to the resource allocation problem (12) i.e ., this solution
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[  
maximizes the objective function (12a) . For this solution, we

assume that: 

∃ k ∈ K(i ) / 
∑ 

n ∈N 
θk,n < 1 . (34)

We define ε > 0 as follows: 

ε = 1 −
∑ 

n ∈N 
θk,n , 

and we demonstrate that this solution is not an optimal solu-

tion to problem (12) using the proof by contradiction. In fact,

we define a set of θ ′ 
k,n 

variables as given in the following: 

θ ′ 
k,n = 

{
θk,n , 

θk,n + ε, 

∀ n ∈ N , n � = n 1 , ∀ k ∈ K(i ) 
if n = n 1 , ∀ k ∈ K(i ) . 

Therefore, we have: ∏ 

k ∈K(i ) 
n ∈N 

θ ′ 
k,n = 

∏ 

k ∈K(i ) 
n ∈N 

θk,n + ε ·
∏ 

k ∈K(i ) 
n ∈N 

θk,n > 

∏ 

k ∈K(i ) 
n ∈N 

θk,n , 

and the assumption made in (34) is false, since it does not

maximize the objective function (12a) . Consequently, we have: ∑ 

n ∈N 
θk,n = 1 , ∀ k ∈ K(i ) 

⇒ 

∑ 

k ∈K(i ) 

∑ 

n ∈N 
θk,n = |K(i ) | . 

Since the sum of all the θ k,n variables is constant, the

term 

∏ 

k ∈K(i ) 
n ∈N 

θk,n reaches its maximum when all the vari-

ables θ k,n are equal i.e ., 

θk,n = 

|K(i ) | 
|K(i ) | · |N | = 

1 

|N | , ∀ k ∈ K(i ) , ∀ n ∈ N , 

which is an optimal solution to the resource allocation prob-

lem (12) . According to (33) : ∑ 

k ∈K(i ) 

θk,n < 

∑ 

n ∈N 
θk,n , ∀ k ∈ K(i ) , ∀ n ∈ N 

⇒ 

|K(i ) | 
|N | < 1 

⇒ |K(i ) | < |N | . 
2. Similarly when: ∑ 

n ∈N 
θk,n < 

∑ 

k ∈K(i ) 

θk,n , ∀ k ∈ K(i ) , ∀ n ∈ N . (35)

In this case, the optimal solution is given by: 

θk,n = 

|N | 
|K(i ) | · |N | = 

1 

|K(i ) | , ∀ k ∈ K(i ) , ∀ n ∈ N . 

ppendix C. Proof of Proposition 6.2 

To prove the super-modularity of the present game, we need

o verify the conditions in 6.2. First, the strategy space S i is obvi-

usly a compact convex set of R 

N . Hence, it suffices to verify the

uper-modularity of the utility function as there are no constraint

olicies for G: 

∂U i,n 

∂ πl,n ∂ πi,n 

= 

1 

log 
(
1 + σk,i,n 

) G k,i,n G k,l,n (
N 0 + 

∑ 

i ′ � = i πi ′ ,n G k,i ′ ,n 
)2 

( 

σk,i,n 

log 
(
1 + σk,i,n 

) − 1 

) 

. 

s x 
log (1+ x ) > 1 for x > 0, 

∂U i,n 
∂ πl,n ∂ πi,n 

≥ 0 , ∀ l ∈ I − { i } and ∀ n ∈ N . 
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