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In this paper, we define the cost optimal solution of the multi-constrained multicast rout-
ing problem. This problem consists in finding a multicast structure that spans a source
node and a set of destinations with respect to a set of constraints, while minimizing a cost
function. This optimization is particularly interesting for multicast network communica-
tions that require Quality of Service (QoS) guarantees. Finding such a structure that satis-
fies the set of constraints is an NP-hard problem. To solve the addressed routing problem,
most of the proposed algorithms focus on multicast trees. In some cases, the optimal span-
ning structure (i.e. the optimal multicast route) is neither a tree nor a set of trees nor a set
of optimal QoS paths. The main result of our study is the exact identification of this optimal
solution. We demonstrate that the optimal connected partial spanning structure that
solves the multi-constrained multicast routing problem always corresponds to a hierarchy,
a recently proposed generalization of the tree concept. We define the directed partial min-
imum spanning hierarchies as optimal solutions for the multi-constrained multicast rout-
ing problem and analyze their relevant properties. To our knowledge, our paper is the first
study that exactly describes the cost optimal solution of this NP-hard problem.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Quality of Service (QoS) multicast routing, known as the
multi-constrained multicast routing problem, consists in
computing a multicast structure that spans a source node
and a set of destinations and respects the following con-
straints. For each destination node, the multicast structure
should meet a set of QoS requirements such as delay,
jitter, bandwidth, loss rate and cost. The most challenging
QoS multicast routing techniques aim to support point-
to-multi-point communications, which (i) satisfies the
QoS constraints, and (ii) reduces the network resource
consumption.
. All rights reserved.

olnár), alia.bellabas@
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In a particular case, when there is only one additive
constraint to satisfy and no cost function to minimize, a
feasible solution1 can be achieved by computing the short-
est path tree.

To find a more appropriate solution within the feasible
solutions, a cost function can be introduced. The cost can
be an arbitrary metric and independent from the QoS met-
rics. For instance, the minimum cost solution can minimize
the hop count. If we consider the case where the problem
aims to construct the minimum cost multicast tree
without QoS constraints, the solution corresponds to the
NP-hard Steiner tree problem [1]. Moreover, when a QoS
constraint is present in the Steiner tree problem, this
corresponds to the constrained Steiner tree problem,
which is also NP-hard [2].
1 A feasible solution contains at most a route satisfying the QoS
constraints from the source to each destination.
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In this paper, we consider the general case of the con-
strained multicast routing with multiple QoS constraints.
We also suppose that an additive cost function is used to
reflect the network usage. The two main reasons to couple
cost optimization and multi-constrained routing are:

1. Real QoS requirements are often expressed in terms
of multiple constraints and the multicast structure
should contain a feasible path for each destination.

2. The interest of the network operators and thus
implicitly of the users, is to minimize the network
resource consumption.

It is indicated in [3] that guaranteeing QoS require-
ments and optimizing resource utilization are two conflict-
ing interests and a trade-off should be achieved. We are
interested in finding the best cost solution with respect
to a set of QoS constraints. Thus, we investigate the
multi-constrained cost optimization of multicast struc-
tures. Our objective is to find the minimum cost spanning
structure, where the end-to-end paths, from the source to
the destinations, satisfy the considered QoS constraints. In
some cases, this optimal spanning structure is neither a
tree nor a set of trees nor a set of optimal QoS paths. As
is shown in [4], the multi-constrained routing problems
are NP-hard even if there is only one destination.

In [5], the authors showed that a feasible partial span-
ning structure, that solves the multi-constrained spanning
problem, may be different from a partial spanning tree. In-
deed, they showed that the solution may be a sub-graph
containing feasible paths and eventually minimizing a
length function. Unfortunately, the sub-graph concept is
not sufficient to define the (eventually optimal) solution.

The relevant criteria related to the multi-constrained
multicast route are specified in the following. A multi-con-
strained multicast route should provide a feasible path to-
ward each destination and be cost aware (cost optimal, if
possible). This route may not correspond to a sub-graph.
It can be a connected, graph-related structure, which is dif-
ferent from a sub-graph. To find the appropriate solution of
the problem, we base our solution on recently proposed,
graph-related structures, which can precisely describe
multicast routes.

Our most important result, in this work, is the exact
identification of the optimal solution. We show that a gen-
eralization of the tree concept that we call hierarchy always
corresponds to the optimum. Furthermore, the hierarchies
can also be used to describe interesting feasible solutions.
Thus, we investigate on finding a partial minimum span-
ning hierarchy as the optimal solution of the multi-con-
strained partial spanning problem. The advantages of
replacing the spanning tree concept by the spanning hier-
archy are conclusive: the hierarchies enable the definition
of the optimal solution. To the best of our knowledge, our
study is the first one to formulate the optimal multicast
routing problem using the hierarchy concept. This multi-
constrained partial minimum spanning hierarchy problem
is NP-hard.

In order to appropriately present our contributions, our
paper is organized as follows. Section 2 specifies the multi-
constrained partial spanning problems for multicast QoS
routing and Section 3 provides an overview of the previ-
ously proposed approaches to solve these problems. Sec-
tion 4 presents the hierarchy concept generalizing
spanning trees as well as the basic properties of the hierar-
chies. In Section 5, we prove that the optimal solution of
the multi-constrained partial spanning problem is always
a hierarchy. The hardness of the problem is discussed,
and the most relevant properties of the multi-constrained
minimal cost partial spanning hierarchies are presented.
2. Problem formulations

At the routing level, several multimedia applications re-
quire multi-constrained multicast structures. In the litera-
ture, different objectives have been targeted and various
solutions have been proposed. In this section, we present
an overview of the most relevant formulations of the ad-
dressed problem. We show that the best solution corre-
sponds to a minimum cost multicast structure with
respect to the QoS constraints, which may be different
from a tree. We propose the reformulation of the routing
problem without the hypothesis that the solution is a
sub-graph.
2.1. Previous problem formulations

Let G = (V, E) be an undirected graph representing the
network topology, where V is the set of nodes and E the
set of edges. The source node and the multicast destination
node set containing r destinations are denoted by s 2 V and
D = {dj 2 V, dj – s, j = 1, . . . , r} respectively. Each edge e 2 E
is associated with m QoS weights given by a weight vector
~wðeÞ ¼ ½w1ðeÞ;w2ðeÞ; . . . ;wmðeÞ�T . The end-to-end QoS
requirements expressed as constraints from the source to
the destinations, are given by an m-dimensional constraint
vector~L ¼ ½L1; . . . ; Lm�T .

Recall that the QoS metrics can be roughly classified
into additive metrics such as delay, multiplicative such as
loss rate or bottleneck such as available bandwidth. As ex-
plained in [5], bottleneck metrics can easily be dealt with
by pruning from the graph all links that do not satisfy
the QoS constraints, while the multiplicative metrics can
be transformed into additive metrics by using their loga-
rithm. Therefore, and without loss of generality, we only
consider additive metrics. The weight of a path p(s, dj) cor-
responding to the metric i is given by wiðpðs; djÞÞ ¼P

e2pðs;djÞwiðeÞ. Thus, a path p(s, dj) is feasible if:

wiðpðs;djÞÞ ¼
X

e2pðs;djÞ
wiðeÞ 6 Li; for i ¼ 1; . . . ;m ð1Þ

Unicast QoS routing consists in finding a feasible path
p(s, dj), between a source node s and a destination node
dj. Often, a cost function c associated to the path should
be optimized [6].

Multicast QoS routing aims to find a multicast structure
(a multicast route) M = (W, F), where W is an ordered set
of node occurrences and F an ordered set of edge occur-
rences in the structure. Often, in constrained routing prob-
lems, M is not a sub-graph. As we will present here, to
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define this multicast structure it is not sufficient to deter-
mine the sub-graph containing it.

The multicast structure M = (W, F) must contain at least
one feasible path p(s, dj) from the source node s to each des-
tination dj, j = 1, . . . , r. To solve the QoS multicast routing
problem, some existing algorithms are focusing on finding
a partial spanning tree, but the solution does not always cor-
respond to a spanning tree. We will show that nodes and
edges of the topology graph may be used multiple times
for routing. Consequently, one node or one edge may be
present multiple times in W and F respectively; this is why
we propose to talk about occurrences of nodes and edges/
arcs instead of talking about nodes and edges them selves.

Compared to the well known Steiner problem [1],
where the minimum cost partial spanning tree is required,
the construction of partial spanning structures satisfying
multiple QoS requirements is even more complex.

To facilitate the comparison of the multi-constrained
QoS paths, and to express the satisfaction of the QoS
requirements, an interesting non-linear scalar length func-
tion has been introduced in [5], where the length of a path
p(s, dj) is defined as:

lðpðs;djÞÞ ¼ max
i¼1;...;m

wiðpðs; djÞÞ
Li

� �
ð2Þ

In the following, we refer to this length as the non-linear
length. If all of the constraints are satisfied, we trivially
have l(p(s, dj)) 6 1. Thus, a feasible path can also be de-
fined as a path whose non-linear length is less than 1, or
by using the Pareto dominance:

~wðpðs;djÞÞ6
d
~L ð3Þ

For the multi-constrained multicast routing problem, three
formulations have been proposed in [5]. The first formula-
tion presents the Multiple Constrained Multicast (MCM)
problem, in which a multicast sub-graph M = ({s, D}, H) of
the topology graph G is required, such that each destina-
tion node is connected to the source by the links in
H � E. The authors state that M can obviously considered
as a set of paths, from the source s to the destinations dj,
j = 1, . . . , p. In our opinion, this definition is not sufficient
to give the multicast route: the sub-graph cannot always
exactly define the solution. The cost and QoS related end-
to-end values associated with the sub-graph are not corre-
lated with the values involved by the multi-constrained
spanning objectives.

1. Fig. 1 shows an example of a sub-graph (presented
with bold lines) spanning the source a and two des-
tinations k and m. Trivially, the sub-graph contains
several paths from the source a to the two destina-
tions. For example, to reach the destination k, there
are four paths in the given sub-graph: (a, b, c, e, f, g,
i, k), (a, b, d, e, f, g, i, k), (a, b, c, e, f, h, j, i, k) and (a, b,
d, e, f, h, j, i, k). Often, among the embedded paths,
many of them can be feasible. Therefore, it is
important to explicitly specify the paths in order
to define the solution (the sub-graph as such can-
not be configured for routing).
2. Furthermore, a sub-graph does not obviously
reflect the end-to-end QoS requirements and the
cost of the multicast route. Usually and supposing
additive metrics, the cost (the length) of a sub-
graph is equal to the sum of the values on the edges
belonging to the sub-graph. This sum does not
reflect either the end-to-end values of QoS metrics
from the source to the different destinations or the
overall cost (or length) of the multicast communi-
cation. Let us notice that even if the paths used
for forwarding are made explicit, the cost of these
paths may be different from the cost of the multi-
cast communication. For example in a tree, the
edges are used only once nevertheless that several
paths traverse them. In Fig. 1, the edge (a, b) is used
only once in any adequate multicast route embed-
ded in the given sub-graph. Now, if the paths (a, b,
c, e, f, g, i, k) and (a, b, d, e, f, g, i, k) are selected to
connect the source a to k and m respectively, the
edge (e, f) is used twice in this multicast route.

To conclude, in order to determine a solution, neither a
sub-graph nor a set of paths from the source to the desti-
nations is sufficient.

Unlike MCM, the Multiple Parameter Steiner Tree
(MPST) problem searches for a partial spanning tree
minimizing an arbitrary length function lmulticast(TM). For
instance, the length function lmulticast of the tree TM can be
proposed as follows:

lmulticastðTMÞ ¼ maxi¼1;...;m

P
e2TM

wiðeÞ
Li

ð4Þ

Since the solution of this problem is a tree, it can be config-
ured and used for multicasting. In the tree solution there is
only one path from the source to any destination. The
drawback of this problem formulation is that in some cases
this kind of solution does not exist. The authors say that
the MPST, although optimal in terms of resource utiliza-
tion, does not always satisfy the constraints.

A third formulation is given by the combination of the
two above cited ones; the Multiple Constrained Minimum
Weight Multicast (MCMWM) problem consists in finding a
sub-graph M = ({s, D}, H) that contains a feasible path to
each destination dj 2 D, such that the length lmulticast of M
is minimum. Trivially, the sub-graph minimizing the
length can contain cycles and several feasible paths to
the destinations. The definition is not accurate: we will
show that the sub-graph corresponds to the image of an
optimal solution and not to the solution itself. To better
meet the needs, in the following, we reformulate the min-
imum cost multi-constrained multicast routing problem.
In our proposition, a graph-related structure (and not nec-
essarily a sub-graph) is needed for routing.
2.2. The cost minimum multi-constrained routing

Recall that the aim of routing is to find a structure con-
taining at least one feasible path from the source to each
destination, while minimizing the network resource usage
expressed by an adequate cost function. For instance, the



Fig. 1. A same sub-graph can be implicated in several multicast routes and with several set of paths.
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cost may be an additive metric, which can be dependent or
independent from the m QoS metrics expressed in the con-
straints [7].

However, the overall non-linear length lmulticast(M) pre-
sented in Eq. (4) is not appropriate to characterize the
quality of the multi-constrained multicast routing for two
reasons:

1. First, this length and the non-linear length of the
unicast paths are not obviously correlated. Indeed,
the weight sum of the total links of the solution
cannot indicate the end-to-end quality at the desti-
nations. Moreover, if a given metric is not good for
a given destination, this can be offset with another
path, which is good for this metric and this destina-
tion. An example is shown in Fig. 2. Let us suppose
that the source a should send messages to the des-
tinations e and f with respect to a QoS vector
~L ¼ ½11;11�T . The tree (a(b(e), c(f)) given by dotted
lines has a minimal non-linear length. The overall
length of the tree (a(d(e, f))) is higher but the QoS
values at the destinations are lower than the max-
imal values on the first tree. If the cost of the rout-
ing corresponds to the hop count, then the second
tree is also cheapest for multicasting.

2. Second, the cost and the length of the sub-graph do
not always correspond to the cost and the cumu-
lated length of the multicast route. Hereafter, we
propose an adequate multicast routing structure,
where the cost and the length correspond to the
real values.

Therefore, we consider the cost of the multicast com-
munication as the total cost of the forwarded data by
using the edges (or arcs) of the multicast structure
M = (W, F):
Fig. 2. The non-linear length of a multicast route is not appropriate.
cðMÞ ¼
X
e2F

cðeÞ ð5Þ

As we will see, the structure M is different from a sub-
graph. The sets W and F are not obviously exempt from
repetition of graph elements. If an edge e 2 E of G is present
twice in F (since it is used to forward the multicast mes-
sage twice), its cost must be added twice to c(M). The cost
function c(e) can be the frequently used hop-distance or
any other positive additive cost expressed on the edges.

Taking into account the remarks, we propose the fol-
lowing formulation of the optimal QoS multicast routing.

Problem 1 (Multi-Constrained Minimum Cost Multicast
(MCMCM) Problem). This problem deals with finding the
structure M⁄ = (W⁄, F⁄) with minimum cost c(M⁄), contain-
ing at least one path p(s, dj) from the source node s to each
destination dj 2 D that satisfies the given constraint vector
~L and minimizing the cost c:

~wðpðs;djÞÞ 6~L; j ¼ 1; ::; r and cðM�Þis min : ð6Þ
All of the above presented spanning problems with

multiple constraints are NP-hard. For the three multicast
routing problems presented in [5], the proof can be found
in the same paper. The complexity of the MCMCM problem
is discussed in Section 5. In the rest of this paper, we only
consider the MCMCM problem, when referring to the mul-
ti-constrained multicast routing problem.

In [5], the authors state that the solution corresponds to
a sub-graph, which may be different from a tree. This sub-
graph contains a feasible path to each destination. It also
may contain cycles that cannot be eliminated. As shown
above, neither a sub-graph nor a set of QoS paths between
the source and the destinations is sufficient to define the
solution. Trivially, we raise the following important ques-
tion: What kind of structure corresponds to the optimal solu-
tion of the MCMCM problem?

3. Related works

To formulate and solve (possibly approximatively) the
optimal multi-constrained multicast routing problem, the
different proposed approaches can be divided into three
main classes, according to the objectives and interests of
each class of problems: (i) the first class aims to compute
a spanning tree that minimizes a given cost function with-
out checking the feasibility of the solution, (ii) the second
class computes a minimum spanning tree, with respect
to a set of QoS constraints, (iii) and the third class com-
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putes a spanning structure called hierarchy introduced in
the following section, with respect to a set of QoS
constraints. Notice that in the two first classes of problems,
the different proposed solutions aim to compute spanning
trees. There are two reasons for basing multicast structures
on multicast trees: (i) the data can be transmitted in paral-
lel to various destinations along the tree links, (ii) and the
tree structure avoids redundancies. We also notice that, if
the addressed multi-constrained multicast problem has
no cost function to minimize, any efficient multi-con-
strained unicast algorithm can be used, such as SAMCRA
proposed in [8] and H_MCOP proposed in [9]. Therefore,
we mainly focus the related works overview on the three
above cited classes of problems.

In the first class of propositions, the solutions aim to
minimize the cost of the multicast tree. The basic problem
is known as the Steiner or Partial Minimum Spanning Tree
(PMST) problem. This NP-hard problem has solicited a lot
of interest, and a large number of exact and heuristic algo-
rithms were proposed in the literature. Two good over-
views are presented in [10,1].

In the second class, the addressed problems are known
as the Constrained Steiner Tree (CST) problems that are also
NP-hard [2]. To solve them, many of the proposed algo-
rithms consider one QoS constraint as in [11], where the
authors propose a branch-and-bound algorithm using the
Lagrangian Relaxation and heuristics to get lower and
upper bounds in the branch-and-bound tree. However,
most of the proposed algorithms for the CST problem are
heuristics and generally consider the end-to-end delay. In
[2], the authors proposed a heuristic that constructs a low
cost spanning tree, with respect to a bounded delay on each
multicast destination. The proposed algorithm computes a
delay-constrained closure2 graph over the multicast group.
Then, the algorithm constructs a constrained spanning tree
of the closure graph using the well known Prim’s algorithm
[12]. Finally, the algorithm replaces the links in the spanning
tree by the originally computed paths and removes the gen-
erated loops. In [13], the authors proposed an algorithm that
approaches the minimum cost spanning tree solution with
respect to the delay constraint. For that, the algorithm con-
structs two routing trees: a shortest path tree and an ap-
proached Steiner tree. Then, it identifies a given number of
destinations k, where the difference between the delay ob-
served in the Steiner tree and the delay in the shortest path
tree for these destinations is large. For these destination
nodes, the paths in the Steiner tree are replaced by the corre-
sponding paths in the shortest path tree. The authors in [14]
proposed a heuristic algorithm called the Bounded Shortest
Multicast Algorithm (BSMA). This algorithm computes a
least-delay tree that spans the source node and the destina-
tion nodes. Then, it iteratively replaces the links that can be
replaced by other links that reduce the total cost of the tree,
without violation of the delay constraint, until the total cost
of the tree cannot further be reduced. The BSMA algorithm
always finds a delay constrained tree, if such a tree exists,
since it begins by the least-delay spanning tree.
2 A closure graph on a set of nodes is a complete graph in which each link
cost is equal to the cost of the shortest path between its nodes.
When more than one QoS constraint are considered, the
problem becomes more complex. In [15], the authors use the
Lagrangian Relaxation Approach to construct special trees
called LRATrees. Thus, the LRA algorithm relaxes the
constraints and constructs a new problem with one objec-
tive function to minimize ðmaxkLðkÞ ¼min cðpðs; djÞÞþPr

i¼1kiðwiðpðs; djÞÞ � LiÞ, for each destination dj 2 D).ki deter-
mines how much the violation of the ith constraint should
be penalized. The algorithm computes the minimum cost
path between the source node and each destination node,
then combines these paths to obtain an initial feasible tree.
This tree is updated when the Lagrangian parameter
k = [k1, . . . , km]T is adjusted as follows: kkþ1 ¼ kkþ
hkð~wðpðs; djÞÞ �~LÞ, with hk ¼ Lðkkþ1�kkÞ

kwiðpðs;djÞÞ�Lik2. In [16], the author

proposes an algorithm that searches for a feasible solution
to the problem by finding, at first, a feasible tree that spans
the source and some of the destinations. Then, it builds up
the remaining destinations using a modified version of the
H_MCOP algorithm [9]. This latter algorithm computes the
shortest paths between two nodes by using the combined
non-linear length function also presented in Eq. (2).

However, in some cases a partial spanning tree does not
satisfy the required QoS constraints, while a set of unicast
QoS paths does.

In the literature, few proposed algorithms allow solu-
tions that are different from spanning trees. The Multicast
Adaptive Multiple Constraints Routing Algorithm (MAM-
CRA) [5] is one of the most relevant algorithms that looks
for structures that are different from spanning trees. In
fact, the above cited algorithms aim to compute a tree as
the only allowed solution, and this leads to the CST problem.
MAMCRA is an algorithm that solves the multi-constrained
multicast routing problem by computing a special routing
structure. For this, MAMCRA proceeds in two steps:

� In the first step, the algorithm computes a set of
optimal paths according to the non-linear length
function defined in Eq. (2). The computation of
the shortest paths uses a slightly modified version
of SAMCRA [8], an exact multi-constrained unicast
algorithm.

� In the second step, MAMCRA tries to eliminate the
useless redundancies that are produced in the first
step. For this, MAMCRA uses a greedy algorithm.
The greedy algorithm iteratively compares two
paths that share at least one node and deletes the
longest prefix3 from the source node to the farthest
common node of one of them, if the resulting solu-
tion is still feasible.

4. Hierarchies as spanning structures in graphs

To identify the optimal solution of the multi-con-
strained multicast routing problem, we present simple
examples, which illustrate the nature of this solution and
we propose a brief overview of the hierarchy concept pro-
posed in [17], which corresponds to the optimal structure.
3 The prefix of a path is the sub-path from the source node to an
intermediate node.
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Usually, spanning trees are considered as the only mini-
mum cost partial spanning structures. They correspond to
connected sub-graphs without cycles. Indeed, if a mini-
mum cost structure is required to solve a partial spanning
problem without any constraint, this structure always cor-
responds to a spanning tree called the Steiner tree.

To solve the optimal multi-constrained multicast rout-
ing problem, partial spanning trees have some limitations.
For instance, the solution of the MPST problem corre-
sponds to a partial spanning tree that minimizes a non-lin-
ear length function. The minimum tree solution always
exists but it may not satisfy the end-to-end constraints
as stated in [5]. Trivially, the minimum length tree does
not always contain a feasible path to each destination. In
some cases there is no tree solution for the constrained
problem, and the minimum cost solution can be a different
structure containing a feasible path for each destination. In
the following, we consider all graph-related structures (not
only sub-graphs) which contain a feasible path from the
source to each destination as potential solutions of the
multicast routing problem. The solution must be:

� a connected and oriented structure (containing a
path from the source node to each destination)

� rooted in the source node.

For instance, a set of feasible paths as the result of the
first step of MAMCRA [5] can be a simple solution. This
set of paths is not cost optimal thus may lead to expensive
multicast solutions Generally, among the feasible spanning
structures, there is a solution with minimal cost.

In the following examples we illustrate the nature of
the optimal solution in some simple cases. In the networks
shown in Fig. 3, the multicast requests are given from a
source to the destinations represented by grey nodes. The
link values concerning two additive metrics are indicated
and the end-to-end QoS requirements on these metrics
are given by~L ¼ ½15;15�T in the four cases. The only feasi-
ble (and so cost minimum) solution in the first figure is not
a tree: it is a set of paths. In this case, the two paths are
crossing at node i.
Fig. 3. Some examples of solutions of the mult
May the solution correspond to a set of paths? In the
second topology, the cost minimum solution is not a set
of paths: in this solution the link (e, f) is used only once,
the node f is a branching node. It is a ’’virtual source’’ of
two paths which are also crossing. The solution is no more
a set of paths and it does not correspond to a tree.

After the first two examples, one can suppose that the
solution is a directed acyclic graph (DAG, cf. [18]). The
third and fourth figures show two cases where the solution
crosses a link several times and in both directions and con-
sequently it is not a directed acyclic graph. For example, in
the last figure, the links (f, h) and (h, i) are used twice and
the link (i, j) is used three times in the optimal solution.
The presented solutions cannot be simplified without the
violation of the QoS constraints at the destinations. Clearly,
these solutions are neither trees nor set of paths from the
source to the destinations nor other acyclic graphs but they
contain feasible paths.

Our main question is the following: how to exactly define
this kind of structures? Hereafter, we demonstrate that this
optimal solution corresponds to a generalization of trees.

4.1. Hierarchies as Tree-Like Structures

At first, we briefly present the basic idea of the general-
ization of the spanning tree concept. For this, we propose
to study walks. Walks are not sub-graphs but graph-re-
lated structures. In a walk, the nodes of a graph can be vis-
ited several times and it can be seen as a ’’folded’’ path in a
graph. In the following, we denote these graph-related
concepts by structures.

As is known, trees are connected (sub-) graphs without
cycles. For the source based multicast routing, the tree is
rooted at the source node. A simple notation can be used
for rooted trees, in which the children of a node are enu-
merated between parenthesis after the parent node, as is
illustrated by the following expression corresponding to
Fig. 4:

T ¼ ðaðb; cðd; eÞ; f ÞÞ ð7Þ

In a rooted tree, as a sub-graph, each node is present only
once and has one parent node, except the root which has
i-constrained multicast routing problem.



Fig. 4. Example of a rooted tree.

(a) (b)
Fig. 5. Example of an undirected rooted hierarchy in an undirected graph.
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no parent. Similarly to walks, ’’folded’’ trees can be imag-
ined in graphs. In these structures, the graph nodes can
be visited several times but the successive visits do not
form a simple linear walk. The relations between the
neighbor nodes of the structure keep the relations of a tree:
a visited node can have more than one successors but only
one predecessor. The corresponding hierarchy concept per-
mits node and edge repetitions in the tree-based graph-re-
lated structures. An exact definition4 of the concept can be
found in [19]. In this paper, we only consider rooted hierar-
chies. In fact, rooted hierarchies are appropriate to describe
the source-based multi-constrained multicast routing prob-
lem, since the source corresponds to a root node. The follow-
ing definition can be considered as the extension of the
rooted tree concept and gives useful and flexible hierarchical
structures related to graphs.

Definition 1 (Rooted hierarchy). Related to a basic graph, a
non-empty rooted hierarchy is a connected structure
containing occurrences of the graph elements, where each
node occurrence has at most one parent node.

A rooted hierarchy can be organized in levels. Even if
the structure is not rooted, a ’’hierarchical walk’’ and levels
can be organized from an arbitrary selected ’’root’’ node
occurrence. That is why the name hierarchy was chosen
for this structure.

A rooted hierarchy can be given by the hierarchical tree-
like enumeration of node occurrences. For example, the
hierarchy in Fig. 5 can be given by:

H ¼ ðaðcðdðf ÞÞ; bðdðc; eÞÞÞÞ ð8Þ

According to its definition, a hierarchy is not necessarily
exempt from repetitions: nodes and edges of the basic
graph may be present multiple times in a hierarchy. A hier-
archy H = (W, F) can be represented by the labeled set W of
nodes and the labeled set F of edges, but these special sets
may contain graph elements (labels) multiple times. (If the
node and edge occurrences are distinguished in the sets, H
corresponds to a tree.) A hierarchy is not a sub-graph, but
(similarly to walks) a graph-related structure. In the exam-
ple of Fig. 5, the nodes c and d are present twice in the
previously described structure H. Since the different occur-
rences of the same element may play different roles in the
hierarchy, the distinction and the identification of the
4 The definition of the hierarchies can be based on graph homomor-
phism. A walk is a homomorphism of a path in a graph, which may return
to a graph node several times. A hierarchy is a graph-related structure
obtained by a homomorphism from a tree in a graph. A hierarchy, like
walks, may return to a graph node several times.
occurrences is substantial. Indeed, a node occurrence can
be an intermediate node in a hierarchy while another
occurrence of the same node can be a leaf, like the node
c in Fig. 5b. In the following, we will distinguish the occur-
rences of a node/edge x by different exponents x1, x2,
. . . when needed.

Even though a hierarchy is not a sub-graph, it generates
a sub-graph in the basic graph. This sub-graph is called the
image of the hierarchy and may contain cycles in the basic
graph. The image of the mentioned hierarchy in Fig. 5a cor-
responds to the sub-graph generated by the nodes and
edges used in the hierarchy. To facilitate the use of the
hierarchies, we propose to retain some related terms:

� A sub-hierarchy of a (rooted) hierarchy H is a hierar-
chy that contains only elements of H.

� A branching node occurrence in a hierarchy H is a
node occurrence that has at least two children.

� A leaf is a node occurrence that has no child in the
hierarchy.

In Fig. 5, there are three leaves (one occurrence of c, e
and f), the second occurrence of d is a branching node
occurrence and H0 = (b(d(c, e))) is a sub-hierarchy of H
rooted at b.

4.1.1. Some properties of hierarchies
Hierarchies can be directed or undirected. They also can

span a set of nodes or all nodes. Moreover, a directed hier-
archy may be related to an undirected graph. In this case,
an arc can exist between two node occurrences in the hier-
archy iff there is an edge between the related nodes in the
basic graph. The direction of the arc can be arbitrary since
the basic graph is not directed. For our routing problem, di-
rected hierarchies are needed although the topology graph
is not directed. Fig. 3 illustrates a directed hierarchy in an
undirected graph.

Recall that trees are special hierarchies where each
node has at most one occurrence. Thus, a tree is a hierarchy.
Some properties of trees are true for hierarchies but not all,
whereas all properties characterizing hierarchies are true
for trees.

In a hierarchy, there is one and only one walk between two
distinct node occurrences. Thus, there is only one walk from
the root to an arbitrary node occurrence in a rooted hierar-
chy. This property is important for the optimal multicast
routing. A connected graph-related structure containing



(a)(b)

(c) (d) (e)
Fig. 6. A sub-graph and some corresponding generated hierarchies.
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cycles can have several paths from the source to a destina-
tion. The hierarchy concept gives more precision: there is
only one walk between the two node occurrences. Fig. 6
illustrates how from a given hierarchy we deduce its image
G0 = Image(H). Corresponding to the same image G0, we
constructed three different hierarchies and can have more
than these three. Indeed, a sub-graph does not exactly de-
fine a given hierarchy.

However, in the next section, we will see that the direc-
ted rooted partial spanning hierarchies allow an accurate
and exact definition of the optimal solution of the multi-
constrained partial minimum spanning problem. These
rooted hierarchies are directed from the source to the des-
tinations. They can precisely describe the multicast routes
computed by MAMCRA.

4.2. Hierarchies used by MAMCRA

The hierarchy concept is useful to properly explain the
structures computed by existing multicast routing algo-
rithms. To solve the multi-constrained multicast routing
problem, MAMCRA [5] is one of the most efficient heuristic
algorithms known today. This algorithm that is briefly
presented in Section 2 computes a set of optimal paths
with minimum non-linear length. Since this set contains
eventual redundancies, MAMCRA uses a greedy algorithm
to eliminate some of these redundancies. In the following,
we will prove that the set of paths computed in the first
step and the final solution of MAMCRA are hierarchies.
Notice that MAMCRA does not guarantee an optimal
solution.

Lemma 1. A set of paths from the same source node
to different destinations corresponds to a rooted hierarchy.
Proof. The lemma is trivial, since the set of paths is con-
nected due to the common source node and each node
occurrence has at most one parent in this set. h
Thus the first step of MAMCRA constructs a hierarchy.
This set of paths may contain useless redundancies (loops).
The second step of the algorithm tries to eliminate them.

Lemma 2. The multicast routing structure obtained after the
second step of MAMCRA is a rooted hierarchy.
Proof. The first step of MAMCRA computes a set of paths
that gives a hierarchy. The second step eliminates some
redundancies based on the following operation. Let p1(s,
x1, d1) and p2(s, x2, d2) be two paths sharing a common
node x. Under some conditions as explained in [5], the part
from s to x of one of the two paths is omitted: for example
p1(s, x1) is deleted and the concatenation p2(s, x2) + p1(x2,
d1) is used for the destination d1, if this new path is still
feasible. To prove our lemma, it is sufficient to demon-
strate that the redundancy elimination algorithm does
not change the structure: the obtained solution is also a
hierarchy. Since p2(s, x2), p1(x2, d1) and p2(x2, d2) are paths,
and they share only the node occurrence x2, the children of
x1 will change their parent node to x2, and they conse-
quently still have one parent node. Therefore, MAMCRA
returns a rooted hierarchy. h

However, it is important to state that the second step of
MAMCRA gives a hierarchy but not a set of paths as its first
step. Thus, a set of paths beginning at a common source
form a hierarchy, but there are hierarchies that are not
formed by such a set of paths. Fig. 7 shows the evolution
of the multicast structure computed by MAMCRA, with five
destinations c, d, e, g and h. Fig. 7a presents the five paths
computed by SAMCRA in the basic graph (which are p1 = (s,
a, c, d, f, g), p2 = (s, a, c, d), p3 = (s, b, c), p4 = (s, b, c, e, f, h) and
p5 = (s, b, c, e)), while Fig. 7b presents these paths as a hier-
archy. This hierarchy enables to distinguish the different
occurrences of the nodes that are shared by more than
one path. As sub-paths p1(s, a1, c1, d1) and p2(s, a2, c2, d2)
have the same sequence of nodes, one of them can be omit-



(a)

(c) (d) (e)

(b)

Fig. 7. The different phases of the hierarchies computed by MAMCRA and the image of the result.
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ted. Therefore, d becomes an intermediate destination
node in p1. Similarly, the destinations c and e can be con-
sidered as intermediate nodes in p4. These simplifications
are detailed in [5]. We can consider that the five
destinations are spanned by two feasible shortest paths
as illustrated in Fig. 7c. According to Lemma 1, this set of
paths corresponds to a hierarchy. Another occurrence of
the destination c is a relay node in the path p1. Let us sup-
pose that the concatenation of p1(s, c1) and p4(c4, h) is a fea-
sible path. In this case, the greedy algorithm in the second
step of MAMCRA replaces the path p4 by the concatenation
as indicated in Fig. 7d. The resulting structure is a hierar-
chy and its image is also illustrated in Fig. 7e.
Fig. 8. The set of optimal paths does not contain the optimal spanning
structure.
Concerning MAMCRA, it is important to emphasize that
there is no obvious correlation between the optimal paths
and the optimal solution. Consequently, even if an exact
algorithm is used to eliminate the maximum of the redun-
dancies from the set of optimal paths, the resulted hierarchy
may be different from the optimal solution.

Lemma 3. The optimal solution of the MCMWM problem
does not necessarily belong to the set of shortest paths
computed by the first step of MAMCRA.
Proof. The proof is based on an example. Fig. 8 illustrates
that the shortest paths, considering the non-linear length,
are not necessarily included in the optimal solution. In
the given graph, the cost c and the link weights w are indi-
cated. Let us suppose that a is the source node, and there
are two destinations: b and d. The QoS constraints are
given by ~L ¼ ½7;7�T . In Fig. 8, we show that the shortest
paths (a, b) and (a, d), using the non-linear length function,
do not contain the solution with minimum non-linear
length. This optimal solution corresponds to the tree
(a(c(b, d))). h

It is well known that the cost of a shortest path tree can
be arbitrarily far from the cost of the Steiner tree that
spans the same set of target nodes. A similar observation
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can be made in our case between the minimum length
paths computed by MAMCRA and the minimum length
spanning hierarchy.

Lemma 4. The overall non-linear length of the shortest paths
computed by MAMCRA is arbitrarily far from the length of the
optimal solution.
Fig. 9. The cost of the shortest paths cannot approximate the cost of the
optimal solution.
Proof. Fig. 9 gives the proof. In the topology graph defined
here, let s be the source node. The destinations are the
nodes di, i = 1, . . . , k. Using two metrics, the weight vector
of each link is ~w ¼ ½1;1�T . Let us suppose that there are m
links on the paths with minimum length between the
source and each destination di (plotted in dotted lines).
The QoS requirements are given by ~L ¼ ½mþ 2;mþ 2�T .
The set of shortest paths form a feasible star S1 and its
overall non-linear length is l(S1) = k �m. Trivially, the min-
imum spanning hierarchy with the minimum non-linear
length is the star S2 plotted in bold lines. The length of this
latter hierarchy is lc(S2) = k � 1 + m. The ratio of the lengths
is R ¼ k�m

k�1þm and it tends to m when k tends to infinity. As m
can be an arbitrary value, this ratio cannot be bounded. h

The same proof can be made for the solution of the
MCMCM problem using an arbitrary additive cost.
The set of shortest paths does not approximate neither
the multi constrained minimum cost nor the minimum
length hierarchy.
5. The minimum partial spanning hierarchies to solve
the multi-constrained multicast routing

The exact structure of the optimal solution of the multi-
constrained multicast routing problem was not yet
analyzed. The introduction of the hierarchies allows an
accurate definition of this multicast structure.

5.1. The minimum cost solution

Let M be the minimum cost multicast structure solving
the multi-constrained multicast routing problem from a
source s to the destinations in a set D.

Theorem 1. The optimal multicast structure M with respect
to multiple constraints on positive additive metrics is always a
directed partial spanning hierarchy.
Proof. The optimal multicast structure must contain at
most one directed feasible path from the source to each
destination. Consequently, this structure is directed and
connected. The structure does not necessarily span the
entire node set, it is a partial spanning structure. It is suf-
ficient to prove that it is a rooted hierarchy, i.e. in the min-
imum cost structure each node occurrence has at most one
parent node and there is one arc between this parent and
the node occurrence.

Let us suppose that a node occurrence v has two parent
nodes (or two incoming arcs from the same parent node) in
the minimum cost structure M spanning {s}

S
D. One of the
incoming arcs of v can be dropped without loss of the
connectivity and the remained structure covers {s}

S
D.

Therefore, M cannot be the multicast structure with
minimum cost. h

In the following, we refer to this solution as the Multi-
Constrained Minimum Partial Directed Spanning Hierar-
chy, abbreviated by MC-MPDSH. Using the hierarchy
concept, the MCMCM problem can be re-formulated as
follows.

The MCMCM problem consists in finding the multi-con-
strained minimum partial directed spanning hierarchy
containing at most one directed path p(s, dj) from the
source to each destination dj 2 D, with respect to the given
constraints: ~wðpðs; djÞÞ6

d
~L.

Theorem 2. The MCMCM problem is NP-hard.
Proof. The minimum cost multi-constrained routing prob-
lem is NP-hard, even if there is only one destination (cf. the
minimum cost constrained path problem in [20]). h
5.2. Properties of the MC-MPDSH

In the following, we review some particular properties
of the MC-MPDSH. Indeed, these properties enable to (i)
better identify the optimal solution (ii) demonstrate some
limitations of known computational algorithms of span-
ning structures and (iii) design more efficient exact and
heuristic algorithms.

Thus, we investigate the properties of the minimum
cost solution M = (W, F). The following two properties are
always true for the optimal solution.

Property 1. The leaves in the optimal spanning hierarchy M
are destinations.
Proof. Let us suppose that t 2W is a leaf node but it is not
a destination. In this case, at least t and its predecessor arc
can be dropped and the destinations are still spanned with
the residual connected structure. Therefore, M cannot be
the minimum spanning structure. h

Note that a destination may also correspond to an arbi-
trary intermediate node occurrence. Due to this property,
an MC-MPDSH has at most jDj leaves.
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Property 2. In the optimal hierarchy M, the directed path
from the source s to any arbitrary node occurrence v is a
feasible path.
Proof. M contains a feasible path from the source to each
destination. For v 2 D, the property is trivial. Let us suppose
that v R D (and thus, following Property 1, v is an interme-
diate node of a path toward a destination leaf). Let us also
suppose that the path (s, v) is not feasible. Consequently,
the paths from the source to the destinations which are
extended from v are not feasible because the metrics are
positive and additive. This is in contradiction with the fact
that M contains a feasible path to all destinations. h

The solution is supposed to be a directed hierarchy even
if the topology graph is undirected.

Property 3. In the optimal hierarchy M, the edges of the
topology graph G can be used multiple times and in both
direction.
Proof. The last example of Fig. 3 gives a case where an
edge of the graph is used by the optimal hierarchy several
times and in both directions. h

The nodes and the edges of the topology graph can be
used multiple times in a hierarchy but, in the optimal solu-
tion, the node and arc occurrences are limited. In the fol-
lowing, we give limitations and upper bounds. These
properties may be useful to design efficient hierarchy com-
putation algorithms.

Recall that according to Property 1, a leaf of the MC-
MPDSH is always a destination. Therefore, the MC-MPDSH
has at most jDj leaves. The following three properties are
not trivial in MC-MPDSHs, but they considerably help the
construction of the optimal solution.

Property 4. In a directed path from the source s to an
arbitrary destination dj in the MC-MPDSH, a node v 2 V has at
most one occurrence.
Proof. Let us suppose that a node v has two occurrences
v1, v2 in a directed ’’path’’ of the MC-MPDSH forming a
cycle as illustrated in Fig. 10. If there is a destination d1

between the two occurrences of v, the last segment (d1,
v2) can be eliminated, and the obtained hierarchy has a
lower cost and lower QoS weights at the destination nodes.
If there are multiple destinations in the cycle, trivially, the
Fig. 10. A node is present twice in a path.
last segment from the last intermediate destination node
occurrence to v2 can be eliminated. If there is no destina-
tion, then the entire cycle can be deleted. Thus, the optimal
solution cannot contain two occurrences of the node v in
the same directed path. h

This property is also true regarding the source node it-
self: no directed path in an MC-MPDSH can return to the
source node. Consequently, the source is present only once
in an MC-MPDSH.

Property 5. In the MC-MPDSH, the number of the occur-
rences of a node v 2 V is upper bounded by jDj.
Proof. According to Property 4, a node has at most one
occurrence in any directed path from the source. Let us sup-
pose that the node v is present in all of the directed paths of
the MC-MPDSH. In the worst case, there are jDj directed
paths such that any path (s, dj) does not include any other
destination dk. Since an occurrence of v can belong to one
of these paths, the upper bound is then equal to jDj. h
Property 6. If a destination corresponds to a leaf node in the
MC-MPDSH, then it has only one occurrence (the leaf occur-
rence) in the optimal solution.
Proof. Let us suppose that the node di is present twice in

the MC-MPDSH: a first node occurrence d1
i is a leaf in the

path p1 s; d1
i

� �
and d2

i is another occurrence in an other path

p2(s, dj). Since the MC-MPDSH contains only feasible paths,

the path p2(s, dj) and its prefix p2 s; d2
i

� �
are both feasible.

Thus, the path p1 s; d1
i

� �
is useless to reach di, and at least

the last arc of this path can be deleted without affecting
the feasibility of the solution. If there are intermediate des-

tinations in p1 s; d1
i

� �
, then the last segment from the last

destination to d1
i can be deleted. Therefore, the two occur-

rences of di are not possible in the optimal solution. h
Property 7. In the MC-MPDSH, a node can have at most jDj
2

j k
branching node occurrences.
Proof. Trivially the maximum number of branching node
occurrences of a node v is reached when the occurrences of
v are the only branching nodes in the hierarchy. Further-
more, each occurrence of v is a branching node with a mini-
mum degree of three, where v has at least two outgoing arcs.
Note that there are at most jDj leaves in the hierarchy. If jDj is
even, the number of branching node occurrences of v is jDj2 . If
jDj is odd, the last occurrence of v is not a branching node,
since it contains only one successor. Therefore, the upper

bound of the branching node occurrences of v is jDj
2

j k
. h

Fig. 11 illustrates the worst case introduced in Property
7. The last two properties can be generalized in Property 8.
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Fig. 11. A maximum number of branching node occurrences of a node in the hierarchy.
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Property 8. Let H = (W, F) be a sub-hierarchy of an MC-
MPDSH with lH leaves. Let vi be the ith occurrence of the node v
in the sub-hierarchy H and dþHðv iÞ its out-degree. For the
occurrences of the node v, the following inequality always
holds:X
v i2W

dþHðv iÞ 6 lH
Proof. If v has a leaf occurrence in H, then according to
Property 6, this occurrence is the only one of the node v
in H, and v should be a destination. In this case, Property
8 is trivial.

If the different occurrences of v are not leaves, then
each node occurrence has at least one child. More pre-
cisely, the occurrence vi has dþHðv iÞ children and sub-
hierarchies. In each sub-hierarchy there is at most one leaf
node. According to Property 4, each path to a leaf contains
at most one occurrence of v. h

Recall that the metrics in the graph are positive and
additive. The following property enables to establish an
important relation between the QoS constraints and gives
a sub-optimality property.

Property 9. Let M be an MC-MPDSH rooted at s and
satisfying the constraints ~L in the leaves. Let Mv be a sub-
hierarchy of M rooted at v – s. Let ~wðpðs;vÞÞ be the weight
vector of the path p(s, v). The sub-hierarchy Mv is an MC-
MPDSH from v to the destination occurrences that it contains
with respect to the constraints ~Lv ¼~L� ~wðpðs;vÞÞ.
Proof. A destination node has only one destination occur-
rence in the MC-MPDSH (other occurrences of the node can
be used as intermediate relay node occurrences toward
other destinations but the node should receive multicast
messages as a destination only once). Therefore, we refer
to destinations by destination occurrences. Let Dv be the
set of destination node occurrences in Mv.
At first, we prove that ~wðpðv ; djÞÞ6
d
~Lv ¼~L� ~wðpðs;vÞÞ

for all destination occurrences dj 2 Dv. Let us suppose that
for the destination dj 2Mv the weight vector ~wðpðv; djÞÞ
does not dominate ~Lv . In this case, ~wðpðs; djÞÞ does not
dominate~L and thus M cannot be feasible.

Secondly, we prove that Mv is the minimum cost
hierarchy in the set of the feasible hierarchies spanning
the node v and Dv. Let us suppose that Mv is not a
minimum cost solution but only a feasible solution span-
ning v

S
Dv. In this case, there is an MC-MPDSH eMv

spanning v
S

Dv with a lower cost than that of Mv. By
replacing Mv with eMv in the hierarchy M, we obtain a
feasible spanning hierarchy with a lower cost, which is in
contradiction with the fact that M is an MC-MPDSH. h

This property may correspond to the well known Bell-
man’s principle of optimality [21] and permits searching
for the optimal solution with dynamic programming.
Unfortunately, the computation of all smallest and possible
sub-hierarchies is expensive. Recall that the problem is NP-
hard.

As presented earlier, an edge can be used multiple times
in both directions. Property 5 says that the number of the
occurrences of a node in the MC-MPDSH is upper bounded
by jDj. Trivially, the number of arc occurrences using the
same edge is also bounded by jDj. However, the following
additional questions can be raised. Some paths from the
source to different destinations can use occurrences of
the same arc. We say that two paths share an arc in a hier-
archy, if the same occurrence of the arc belongs to both
paths. When could the paths share a common occurrence
of the arc? Trivially, the shared arc has only one occurrence
in the optimal hierarchy. In any other case, when an arc
cannot be shared by the paths, how many times is it pres-
ent in the optimal hierarchy? The response is given by the
following property.

Property 10. Let p(s, d1) and p(s, d2) be two paths from the
source to two distinct destinations both containing an arc a.
The arc a is shared by p(s, d1) and p(s, d2) in the MC-MPDSH,
iff the prefix of p(s, d1) and p(s, d2) from the source to the arc a
is the same: pref pðs;d1ÞðaÞ ¼ pref pðs;d2ÞðaÞ.
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Fig. 12. Shared and unshared common arcs in the optimal hierarchy.
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Proof. Let us suppose thatp(s, d1) and p(s, d2) share the arc
a but the prefixes pref pðs;d1ÞðaÞ and pref pðs;d2ÞðaÞ are different
in the two paths. In this case, there is at least a node occur-
rence (the source of a or one of its common predecessor
nodes) which has two predecessors in the spanning struc-
ture. This spanning structure cannot be a rooted spanning
hierarchy (in a rooted hierarchy, each node occurrence has
only one predecessor).

If the prefixes pref pðs;d1ÞðaÞ and pref pðs;d2ÞðaÞ are the
same, then a is shared byp(s, d1) and p(s, d2) in the MC-
MPDSH. Let us suppose that a is not shared by the two
paths (i.e. there are two occurrences a1 and a2 of a inp(s, d1)
and p(s, d2) respectively). In this case, another hierarchy
can be constructed, in which a and its common prefix are
shared. Trivially, the cost of this latter hierarchy is less
than the cost of the hierarchy, which does not share a. The
contradiction is trivial. h

Fig. 12 illustrates a graph that contains only one feasible
path p(s, d1) and another p(s, d2) from the source s to the
destinations d1 and d2 respectively. In the minimum cost
spanning hierarchy, the two paths can share the arc (s, b)
(the prefixes are the same, i.e. this prefix is empty), but
they cannot share the arc (f, g). The corresponding mini-
mum cost hierarchy is presented in Fig. 12b).

Property 11. An MC-MPDSH h can be decomposed in a set of
paths. (These paths are not necessarily originated at the
source.)
Proof. Let us suppose that there are h sub-hierarchies at
the source. These sub-hierarchies are arc disjoint. Let us
suppose that each sub-hierarchy can be decomposed in a
set of paths. Then the decomposition of H is the union of
the decompositions of the sub-hierarchies. A sub-hierarchy
Hi of the source can be decomposed in a set of paths. Let p(s,
di) be a path from the source to a leaf node di in Hi. By delet-
ing p(s, di) from Hi a set of sub-hierarchies is obtained. The
root node of these sub-hierarchies are some nodes in p(s, di)
different from the source. Each sub-hierarchy can be recur-
sively decomposed in the same manner. h

Fig. 3 illustrates several examples of this decomposition.
To our knowledge, our study is the first one to analyze

the structure of the optimal solution for the multi-con-
strained multicast routing problem. This study is needed
for the computation of the optimal solution with the help
of exact algorithms and can help the design of heuristics,
which is an important challenge. These algorithms can be
based on the search space reductions according to the gi-
ven properties of the optimal solution. For instance, the
sub-optimality of the hierarchies expressed by Property 9
permits construction of exact (but ex pensive) solutions
based on dynamic programming. The bounds on the num-
ber of occurrences of graph elements in the optimal solu-
tion and established by the analyzed properties can help
the design of efficient brunch-and-cut algorithms. The pos-
sible decompositions of the hierarchies give ideas for heu-
ristic solutions. Important future investigations need to
design efficient algorithms to solve this reformulated rout-
ing problem.
6. Conclusions and perspectives

The main result of our investigations on the multi-con-
strained multicast routing problem is the exact definition
of the structure solving this problem. This structure always
corresponds to a directed rooted hierarchy. However,
finding the minimum cost hierarchies is an NP-hard opti-
mization problem. The algorithms computing heuristic
solutions, like MAMCRA, manipulate hierarchies such as
the sets of paths rooted at the source and more or less
redundancy-free spanning structures. In our paper, we
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proposed a first study of the properties of the hierarchy-
type solutions. We argue that it is vital to identify the opti-
mal solution structure of the addressed problem. An addi-
tional result of our analysis is that the optimal solution
does not obviously belong either to the set of minimum
cost paths or to the set of shortest paths computed by
using the well known non-linear length. Since hierarchies
may contain multiple occurrences of a node or an edge/
arc, most of the enumeration algorithms are not appropri-
ate to compute the optimal solution. Following this first
study on multi-constrained minimum partial spanning
hierarchies, important future works on exact algorithms
and heuristics are needed to find more efficient algorithms.
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