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A B S T R A C T

Full-duplex communications promise to double the throughput of a wireless network, so long as the resulting interferences can be combated. Nonetheless, already
dealing with the intricacy of determining base station-to-user radio channels, full duplex wireless networks need additional information on the channels in between
all the user equipment. This information is necessary to determine user radio conditions, and thereafter efficiently allocate resources. A signaling overhead is likely
to burden the user equipment, which already lack any methods to estimate and convey such user-to-user channel states. In this paper, we aim to circumvent the
complexities and requirements of traditional scheduling techniques by introducing a reinforcement learning based scheduling algorithm for full-duplex wireless
networks. This scheduling approach does not need to estimate user-to-user channels, and rather learns how to best allocate the network’s radio resources. We
show that our proposal can match scheduling with complete channel state information in terms of user equipment throughput, and that it performs well under
multiple testing scheduling scenarios: increased user equipment numbers, randomized user equipment demand, and user equipment clustering among others.
1. Introduction

With an ever increasing global mobile data demand, already on
the premises of 11 exabytes a month, and with septuple the traffic
expected by the year 2022 [1], the declining efficiency of current half-
duplex (HD) wireless networks is bound to pose a serious problem in
bandwidth availability. HD wireless networks allocate a radio resource
exclusively to one user equipment (UE) either for transmission or
reception. They necessitate orthogonal time or radio channels for bidi-
rectional transmissions. At most, only half of the bandwidth potential is
being met. However, full-duplex (FD) communications, made possible
due to the recent introduction of self-interference cancellation (SIC)
technologies, are capable of exploiting the bandwidth in its entirety.
In such networks, concurrent transmission and reception occurs on the
same frequency band allowing, at least in theory, the duplication of
current network capacity.

In our work, we consider an FD orthogonal frequency division mul-
tiple access (FD-OFDMA) network. This network exhibits an FD base
station (BS) and HD UEs. This reduces interference problems, and keeps
most of the complexities of implementing FD away from the terminals.
The BS, being the FD device, transmits and receives simultaneously on
the radio resources. The HD UEs form uplink–downlink pairs which
share the same radio resources with one UE transmitting, and the other
receiving.

This mode of operation incurs two paramount types of interferences.
The first, self-interference, is the interference imposed by the transmit-
ted signal from a full-duplex device, typically multiple times larger,
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on the received signal. This phenomenon degrades the performance of
uplink UEs in the network. Second, with uplink and downlink UEs using
the same radio resources, FD networks would also exhibit intra-cell co-
channel interference. The signal from an uplink UE, transmitting with
relatively high power, will interfere on the signal being received by its
paired downlink UE, degrading thus its performance.

While self-interference can be battled with cancellation technolo-
gies [2], and the effects of intra-cell co-channel interference limited
via scheduling techniques, there is still no evident manner in which
FD networks can tackle the lack of complete channel state information
(CSI). In order to properly schedule and distribute resources among
pairs of uplink–downlink UEs, the network needs exact information on
the channels between all the UEs, in addition to all BS-to-UE channels.
In a single small cell network of only 5 uplink and 5 downlink UEs,
the BS would have to be continuously updated with information on
up to 35 radio channels. Ten of which are of type UE-to-BS and 25 of
type UE-to-UE. A number that would dramatically increase in large cell
scenarios. Current wireless networks standards do not count for UE-to-
UE channels, nor do they include any protocols that permit estimating
them. Our aim in this paper is to propose an algorithm capable of
efficiently allocating the network resources without any knowledge of
these inter-UE channels.

In FD-OFDMA wireless networks, the resources are allocated to
pairs of uplink–dowlink UEs. In this paper, we propose a reinforcement
learning based scheduling algorithm that aims to find the allocation
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scheme which maximizes UE and network throughput. Our main goal
is to avoid the added intricacies stemming from FD wireless com-
munications, especially when it comes to signaling UE-to-UE channel
states.

We prove that our proposed learning algorithm can match the effi-
ciency of scheduling with complete CSI, and we assess its performance
under different scheduling scenarios. We show the throughput gains of
the algorithm in both full and dynamic buffer scenarios, and test its
limits in the cases of low SIC, UE clustering and UE mobility. In what
follows, we highlight our main contributions:

(a) We introduce a reinforcement learning based scheduling algo-
rithm for FD-OFDMA wireless networks. This algorithm couples
between UE pairs on the available network radio resources, and
seeks to learn the allocation method which increases UE and
network throughput. We explain the main challenges facing a
machine learning scheduling algorithm, and highlight how we
tackle them.

(b) We aim to compare the performance of our algorithm with
the case where complete system information is available to the
scheduler. To this end, we implement the FD Maximum Sum-
Rate algorithm proposed in [3] on our system model. Since it
is meant to work in a full-buffer scenario, we adapt it to our
dynamic arrivals model. This algorithm is chosen because it has
the same objective as our proposal, to maximize UE throughput.
It is as such suitable as a reference to how we expect our algo-
rithm to perform. Furthermore, we implement an HD scheduling
algorithm with the same objective.

(c) We make our algorithm adaptable to the constantly varying UE
radio conditions and buffer statuses, and show via simulations
that it can closely emulate the performance of scheduling with
complete CSI.

(d) Additionally, we test the validity of our algorithm against differ-
ent scheduling challenges: Increased network UEs, randomized
UE traffic, low SIC, and in the presence of UE clusters. We show
that our algorithm manages to remain profitable regardless of
the aforementioned factors.

The rest of this paper is structured as follows. Section 2 discusses
the related works and our contributions. Section 3 has the system
model: the radio model is detailed in Section 3.1, the traffic model
in Section 3.2, and information on the channel states is presented in
Section 3.3. We discuss reinforcement learning in Section 4, and we
present our proposal in Section 4.1. The main challenges facing our
proposed reinforcement learning algorithm are discussed in Section 4.2.
Different simulation scenarios and results are presented in Section 5,
wherein we discuss the performance of our algorithm under different
scheduling conditions. This paper is concluded by Section 6.

2. Related works

Heretofore considered impossible due to interference problems [4],
the rather recent introduction of self-interference cancellation tech-
niques has spurred research into FD wireless networks, producing thus,
an ample and rigorous state-of-the-art. The latter can be divided into
two main categories. The first, a product of early stage research into
FD networks, is concerned mainly with validating FD technologies and
predicting their efficiency. The second, building on the thereafter veri-
fied gains of FD communications, is centered on proposing scheduling
and power allocation algorithms for FD wireless networks.

The works in [5–8] revolve around assessing the possible gains of
FD wireless networks. Their authors study the limitations and obstacles
of implementing FD wireless communications. In one of the earliest
works on in-band FD for wireless networks, the authors in [5] surveyed
a range of SIC techniques and touched on the main challenges facing
FD wireless networks. Aiming towards FD inclusion in upcoming 5G
2

protocols, the authors in [6] proposed an FD module with which they
simulated two types of FD networks: one when only the BS is FD
capable, and the other when both the UEs and the BS are FD capable.
Consequently, they assert the gains achievable from FD communica-
tions. In [7], different scenarios and implementations of possible FD
wireless networks are discussed. Mainly, four representative application
scenarios are presented: FD-MIMO networks, FD cooperative networks,
FD-OFDMA cellular networks, and FD heterogeneous networks. Again,
the authors use resource management problems for the purpose of val-
idating wireless FD communications. With a more practical approach,
the authors in [8] introduce a realistic model of a compact FD re-
ceiver. With this model at hand, the authors demonstrate via numerical
evaluations the capacity gains of FD wireless networks, and bring
insights onto the impact of SIC on the performance of these networks.
Finally, as self-interference remains to be the main threat against the
success of FD wireless communications, researchers continue to study
the efficiency and effectiveness of SIC technologies. Authors of more
recent works in [9–12] keep a close eye on the ongoing progress of
interference cancellation techniques and their immediate relation to the
advancement of FD technologies. These articles, and several more in the
state-of-the-art, prove that FD wireless communications are profitable
so long as the resulting interferences can be contained.

With FD wireless communications being well motivated, contrib-
utors to the FD wireless networks state-of-the-art steered research
toward devising scheduling and power allocation algorithms. The au-
thors in [13] design an optimal problem for joint power and scheduling
in what they describe as a multi-carrier non-orthogonal multiple access
system. They then propose a heuristic solution to avoid the complex-
ity of their initial proposition. Similarly, but for FD-OFDMA systems,
the authors in [14–22] put forward power allocation and schedul-
ing schemes. They propose optimization problems with greedy objec-
tives focused on sum-rate maximization. The joint task of scheduling
and power allocation belongs to the category of mixed integer non-
linear programming with exponential complexity and computational
intractability. As such, the authors work on heuristic solutions which
can produce near optimal performances, albeit bearing less complexity.
Building upon our colleagues’ work, we presented greedy scheduling
algorithms for FD networks in [23] and [24]. We also proposed a more
fairness oriented FD scheduler coupled with a power allocation scheme
in [25], and additionally studied the effect of imperfect CSI on the
performance of FD wireless networks in [26].

Multiple articles in the state-of-the-art have previously addressed
utilizing machine learning to tackle intricate scheduling tasks. The
authors in [27] propose a learning based approach to address multiple
cellular network challenges such as limited data availability and con-
voluted sample data. The papers in [28] and [29] propose using deep
learning to schedule resources in half-duplex wireless networks and
allocate power in full-duplex ones, respectively. The authors in [30]
present a reinforcement learning algorithm for radio resource control
in half-duplex 5G vehicular networks.

These and countless others applications of machine learning in wire-
less networks exist in the related works as detailed in [31]. Nonetheless,
non of the state-of-the-art approaches tackle the task of allocating
time–frequency resources in an FD network. As we highlighted in
the introduction, and detail later on, such wireless networks are of
particular nature and possess an articulate relationship between uplink
and downlink transmissions. The latter are correlated and scheduling
on the uplink and the downlink cannot be done independently as in
typical HD networks, as we highlighted in our previous work [32]. To
the extent of the our knowledge, this is the only work that proposes a
machine learning approach to scheduling in FD wireless networks.

In this paper, we propose a reinforcement learning approach to
scheduling in FD-OFDMA wireless networks. FD networks could gen-
erate significant profit in terms of UE performance when a cellular
network has all the information, on all the UEs, and all the corre-
sponding radio channels. The UEs which least interfere upon each

other are coupled on the radio resources they best perform on. A
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scheduling objective, whether greedy or fair, can thereafter be applied.
In such a scenario, the upper bound of doubling the capacity could be
reached. Nonetheless, this optimal scenario is not feasible. Following
our previous works, as well as the state-of-the-art, the intricacy of
determining all the radio channels in an FD network could be daunting.
Every UE would need information on the channel in between itself and
all other UEs in proximity. Even if the scheduler was tasked with only
determining a UE’s strongest interferers, the UE in question would still
have to regularly update the BS on multiple radio channels. This will
inflict a signaling burden on the UE. The terminal, which we aim to
alleviate from FD problems, would be overwhelmed with additional
processing tasks. With different FD implementations, this problem only
gets exponentially more difficult to tackle. For example, if the UEs are
supposed to be FD as well, the number of interferers increases, and
with it the processing and signaling needed to convey all the channel
states to the scheduler. A different approach that does not assume
perfect network state knowledge, could prove necessary for real life
implementation of FD wireless networks.

Our approach to resource scheduling in FD-OFDMA wireless net-
works is centered on a machine learning algorithm. Specifically, an
online reinforcement learning technique is used to associate UE pairs
with the radio resources on which they can transmit/receive the most.
Our proposition relies only on the feedback information currently
provided by HD wireless networks: the channel quality indicator. Based
on this information, the scheduler knows which coding and modulation
schemes to use for downlink UEs. After the first resource allocation
round, the scheduler uses the number of bits, transmitted or received,
by a UE as a metric on the success of its scheduling decision. As
time progresses, and with a reward system based on the number of
bits transmitted and received, the algorithm continuously learns the
allocation scheme which maximizes UE throughput.

Our reinforcement algorithm tackles the problem of scheduling in
the presence of a non-full buffer traffic model. Non-full buffer traffic,
like streaming and video, would make up to 78% of the global mobile
traffic by the year 2021 [1]. This highlights the importance of studying
how non-full buffer traffic affects scheduling in FD networks. Full-
buffer models were used in the vast majority of state-of-the-art [13–20].
Owing mainly to their simplicity, the optimistic nature of full buffer
models makes them attractive. Assuming that each UE has an infinite
stream of bits in its buffer allows scheduling algorithms to produce ex-
pected results without accounting for real life wireless system aspects.
For instance, the effect of multi-user diversity is exploited with full
buffers. In addition, with all the UEs constantly requesting to trans-
mit, a scheduling model cannot account for cases where interferences
change because of UEs emptying their queues. This sets full buffer
traffic models apart from reality, sometimes deceivingly anticipating
positive results that might not exist in a real network. In the case of
implementing a machine learning approach, as we detail in Section 4.2,
accounting for non-full buffer traffic further complicates the scheduling
task.

3. System model

3.1. Radio model

We consider a single-cell FD-OFDMA wireless network. This net-
work exhibits a full-duplex BS and half-duplex UEs. The UEs are
virtually divided into two sets: an uplink UE set, denoted by  and a
ownlink UE set, denoted by . The scheduler will pair between uplink
nd downlink UEs on any radio resource 𝑘 of the set . This system is
llustrated in Fig. 1. In our work, we assume that the physical layer is
perated using an OFDMA structure. The radio resources are divided
nto time–frequency resource blocks. In the time domain, a resource
lock contains an integer number of OFDM symbols. In the frequency
omain, a resource block contains adjacent narrow-band subcarriers
nd experiences flat fading. Scheduling decisions for downlink and
3

o

Fig. 1. Network model and interferences.

uplink transmissions are made in every transmission time interval
(TTI) 𝑡. At the beginning of each TTI, 𝐾 resource blocks are to be
allocated. The TTI duration is chosen to be smaller than the channel
coherence time. With these assumptions, UE radio conditions will vary
from one resource block to another, but remain constant over a TTI.
The modulation and coding scheme (MCS), that can be assigned to a
UE on a resource block, depends on its radio conditions. For perfor-
mance evaluation, we consider in what follows LTE-like specifications,
with a resource block being composed of 12 subcarriers and 7 OFDM
symbols [33].

An adapted formula is used to calculate the SINR that takes into
consideration the co-channel interference between a UE pair, and the
self-interference cancellation performed by the BS. Let 𝑃 𝑢

𝑖,𝑘 and 𝑃 𝑑
𝑗,𝑘

denote the transmit power of the 𝑖th uplink user, and the transmit
power of the BS serving downlink user 𝑗, respectively on the 𝑘th
resource block. On resource block 𝑘, ℎ𝑢𝑖,𝑘 is the channel gain from the
𝑖th uplink user to the BS, and ℎ𝑑𝑗,𝑘 is the channel gain from the BS
to the 𝑗th downlink user. Furthermore, ℎ𝑗𝑖,𝑘 denotes the channel gain
between the 𝑖th uplink user, and 𝑗th downlink user, on the 𝑘th resource
block. Thus, 𝑃 𝑢

𝑖,𝑘|ℎ𝑗𝑖,𝑘|
2 is the co-channel interference on downlink UE

caused by uplink UE 𝑖, using the same resource block 𝑘. The self-
interference cancellation level at the BS is denoted 𝑆𝐼𝐶. In particular,
𝑃 𝑑
𝑗,𝑘

𝑆𝐼𝐶 represents the residual self-interference power at the BS, on the 𝑘th
resource block. Finally, 𝑁0,𝑘 and 𝑁𝑗,𝑘 denote the noise powers at the

S and at the 𝑗th downlink user, respectively on the 𝑘th resource block.
Eqs. (1) and (2) have the formulas for SINR calculation for uplink and
downlink UEs respectively. For an uplink UE,

𝑆𝑢
𝑗 (𝑖, 𝑘) =

𝑃 𝑢
𝑖,𝑘|ℎ

𝑢
𝑖,𝑘|

2

𝑁0,𝑘 +
𝑃 𝑑
𝑗,𝑘

𝑆𝐼𝐶

, 𝑖 ∈  , 𝑗 ∈ . (1)

For a downlink UE,

𝑆𝑑
𝑖 (𝑗, 𝑘) =

𝑃 𝑑
𝑗,𝑘|ℎ

𝑑
𝑗,𝑘|

2

𝑁𝑗,𝑘 + 𝑃 𝑢
𝑖,𝑘|ℎ𝑗𝑖,𝑘|

2
, 𝑖 ∈  , 𝑗 ∈ , (2)

here 𝑆𝑢
𝑗 (𝑖, 𝑘) is the SINR of uplink UE 𝑖 on resource block 𝑘, while

sing the same resources as UE 𝑗. Similarly, 𝑆𝑑
𝑖 (𝑗, 𝑘) is the SINR of

ownlink UE 𝑗 on resource block 𝑘, while being paired with UE 𝑖.

.2. Traffic model

Our scheduling is queue-aware (Fig. 2). Each UE has a predefined
hroughput demand which determines the rate at which the UE will
ransmit or receive. A downlink UE has a queue at the BS, denoted
𝑑
𝑗 , that it wants to receive. An uplink UE has a queue of bits it wants

o transmit to the BS, denoted 𝑄𝑢
𝑖 . UE queues are updated each TTI.

hey are filled according to a Poisson process with an arrival rate 𝜆
qual to the throughput demand. It is one of the most widely used and
ldest traffic models [34]. Once the scheduling is done for a certain TTI,
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Fig. 2. Traffic model and UE queues.

he number of bits each UE can transmit or receive is calculated, and
he UE queues are deducted accordingly. The traffic is packeted into
mall units known as transport blocks. Based on the MCS used and the
umber of resource blocks allocated for a UE, its transport block size is
etermined for the TTI. Any bits remaining in a UE queue at the end of a
TI are carried on to the next one. Our arrival model is configurable and
ifferent arrival processes can be implemented to account for different
ypes of packets. Our main concern in this paper is that the arrivals
re dynamic and that the traffic is non-full buffer, emulating thus real
ife traffic scenarios. In Algorithm 1, we illustrate how the UE queues
re updated after a resource block is allocated. 𝑄𝑢

𝑥 and 𝑄𝑑
𝑥 represent

he queue of a UE 𝑥 on the uplink or downlink, respectively. 𝑇 𝑢
𝑥𝑗𝑘 is

he number of bits transmitted by a UE 𝑥 on the uplink, and 𝑇 𝑑
𝑖𝑥𝑘 is

the number of bits received by a UE 𝑥 on the downlink. A UE that has
emptied its queue is removed from its corresponding set.

Algorithm 1 Queue Update Function
1: Update (𝑥)
2: if 𝑥 ∈ 
3: 𝑄𝑢

𝑥 ← 𝑄𝑢
𝑥 − 𝑇 𝑢

𝑥𝑗𝑘
4: if 𝑄𝑢

𝑥 == 0
5:  ←  − {𝑥}
6: end if
7: end if
8: if 𝑥 ∈ 
9: 𝑄𝑑

𝑥 ← 𝑄𝑑
𝑥 − 𝑇 𝑑

𝑖𝑥𝑘
0: if 𝑄𝑑

𝑥 == 0
1:  ←  − {𝑥}
2: end if
3: end if

3.3. Channel state information

The state of a wireless channel is determined by the combined
effect of several factors, the most pertinent being the path loss, the
shadowing, and the fast fading. Knowledge of the channel on a wireless
link permits adapting the transmission to the communication channel.
This is essential for achieving reliable communications, and for making
efficient resource allocation decisions.

Legacy HD networks would rely on feedback from the UEs to de-
termine the current channel state [35]. These networks are concerned
mainly with the channel in between the BS and the UEs, and different
4

techniques are used to determine how often, and on which resource w
Fig. 3. Reinforcement learning model.

blocks, would this feedback information be required. The more periodic
the feedback, the more accurate the channel estimation is.

Full duplex communications add to the complexity of determining
the CSI. In FD systems, additional information on the channel between
the UEs of a pair is required. Not only do current wireless systems not
count for such information, there is also no implemented method for
which a UE can estimate the state of such UE-UE channels. Addition-
ally, it is perceivable that continuously updating such information by
the UEs would cause excessive overhead that they cannot handle.

We statistically model the inter-UE channel as follows:

ℎ𝑗𝑖,𝑘 = 𝐺𝑡𝐺𝑟𝐿𝑝𝐴𝑠𝐴𝑓 (3)

𝐺𝑡 and 𝐺𝑟 are the antenna gains at the transmitter and the receiver,
respectively. 𝐿𝑝 represents the path loss between the two UEs, or
equivalently the mean attenuation the signal undergoes on this channel.
𝐴𝑠 and 𝐴𝑓 are two random variables that respectively represent the
shadowing effect, and the fast fading effect.

In our previous work in [26], we detailed the intricacies of schedul-
ing without complete CSI knowledge, and the major losses that it would
incur on FD gains. With every UE needing complete information on the
channel in between itself and all other UEs, the number of inter-UE
channels that need be estimated would grow by the order (𝑛2), where
𝑛 is the number of UEs in the network. Whilst research into reducing
signaling overhead in current HD wireless networks is still ongoing, the
estimation of 𝑛 additional channels per UE, will drastically increase the
signaling overhead. The BS might be able to cope with this added load,
unlike the UEs which have limited processing capacity and battery life.

The most adequate solution to dealing with such massive expected
overhead is to schedule the resources without this information at all. As
such, we propose a reinforcement learning based scheduling algorithm
for resource allocation in FD-OFDMA wireless networks. In our work,
no information on any inter-UE channel is required prior to scheduling.

4. The reinforcement learning problem

In this subsection, we briefly explain the general reinforcement
learning problem. Reinforcement learning is the idea of learning from
interaction to achieve a goal [36]. The learner 𝑖.𝑒, the decision maker
in such a problem, is known as the agent. Everything else interacting
with this agent is known as the environment. The environment and the
agent interact at a sequence of discrete time steps, 𝑡 = 0, 1, 2, 3, . . . .
At a moment in time 𝑡, the environment is in a state 𝑡. The agent
takes an action 𝐴𝑡 from the set of actions available in the current state
(𝑡). As a consequence of the selected action, the agent will receive

reward 𝑡+1, and subsequently, it will find itself in a new state 𝑡+1.
his agent–environment interaction model is shown in Fig. 3.

Furthermore, the agent, in a state 𝑠, selects an action 𝑎 with a
robability 𝑝. This mapping is called the agent’s policy, and is de-
oted 𝜋𝑡. 𝜋𝑡(𝑎|𝑠) is thus the probability that 𝑡 = 𝑎 if 𝑡 = 𝑠. As
ime progresses, a reinforcement learning algorithm should change
ts policy following the experience it has gained. The agent’s goal

hen implementing new policies is to maximize the received rewards.
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Reinforcement learning casts a wide net. Its framework is flexible and
can be applied to different problems and via several ways. Relying
on a dynamic iterative learning and decision-making process, in what
follows, we use reinforcement learning to infer scheduling decisions in
FD wireless networks in the absence of complete CSI. Our proposal can
be likened to a multi-armed bandit problem [37]. We have a single state
RL problem with the focus only being on deciding what action to take
next (resource allocation).

4.1. Reinforcement learning scheduling algorithm

Let 𝑝𝑖𝑗𝑘(𝑡) be the probability that uplink UE 𝑖 gets paired with down-
link UE 𝑗 on resource block 𝑘, during TTI 𝑡. The sum of all pairing prob-
abilities is equal to 1, for each resource block 𝑘 𝑖.𝑒, ∑𝑖∈

∑

𝑗∈ 𝑝𝑖𝑗𝑘(𝑡)
= 1 ∀ 𝑘 ∈ , ∀ 𝑡. Let 𝑘𝑖𝑗 be a binary value that is equal to one if
pair (𝑖𝑗) is allocated resource block 𝑘, and 0 otherwise. As UE radio
conditions vary from one resource block to another, learning scheduling
decisions are done separately on each resource block. At 𝑡 = 0, and at
the beginning of the scheduling process, all possible UE pairings have
equal probabilities of getting any resource. Among the different existing
time-difference reinforcement learning algorithms, we choose to update
the probabilities, after any resource block is allocated, as follows:

𝑝𝑖𝑗𝑘(𝑡 + 1) =
{

𝑝𝑖𝑗𝑘(𝑡) + 𝛽(1 − 𝑝𝑖𝑗𝑘(𝑡)), if 𝑘𝑖𝑗 = 1
𝑝𝑖𝑗𝑘(𝑡) − 𝛽𝑝𝑖𝑗𝑘(𝑡), otherwise, (4)

where 𝛽 is the learning rate, chosen between 0 and 1, and  is the
reward. The reward is evaluated as the number of bits the UE pair
has transmitted/received (𝑇𝑖𝑗) on the allocated resource block, divided
by the maximum number of bits (𝑇𝑚𝑎𝑥) the UE pair could ideally
send/receive over the RB 𝑖.𝑒, if it was using the highest modulation
order and coding rate. 𝑇𝑚𝑎𝑥 is constant for all pairs. The reward is as
such chosen in direct relation to a pair’s radio conditions. The algorithm
will reward UE pairs which best utilize the resource blocks, thus using
the network bandwidth with utmost efficiency. Consequently, the more
frequently a pair makes good use of the resource block, the more likely
it is to get it within subsequent time slots. 𝐏 is a 3-D matrix containing
all the variables 𝑝𝑖𝑗𝑘.

The learning rate 𝛽 controls both the speed with which the algo-
rithm converges towards a largely preferred scheduling choice, as well
as its efficiency. A high value of 𝛽 would incur quicker decisions, but
less efficient ones. Ideally, we want to chose the highest value of 𝛽
that would always lead to a good scheduling decision with respect to
maximizing UE throughput values.

In our problem, the agent is the scheduler at the BS. The environ-
ment is the UEs, as well as the resulting UE radio conditions after the
pairing decisions. The reward is expressed in terms of bits transmitted
by a UE pair on an allocated resource. Finally, the action is the process
of selecting a UE pair to allocate resource blocks to.

4.2. Reinforcement learning scheduling challenges

Scheduling via a reinforcement learning algorithm poses several
problems and challenges. In this section, we highlight these challenges
and go over our approaches in tackling them.

4.2.1. Non-full buffer traffic
In our work, we focus on non-full buffer traffic scenarios. As such,

any UEs which have emptied their queue within an allocation round,
should be excluded from the scheduling process in the following one.
UEs will be leaving and rejoining the network. Subsequently, all pairs
which have an excluded UE should have their selection probability
set to 0. Furthermore, when an excluded UE has new arrivals, it is
re-factored into the scheduling task. With it are all the possible pairs
within which this UE is contained. This raises another problem, what
5

probabilities should these pairs take then?
We address this problem by introducing a temporary probability
matrix 𝐕 with pair-resource probability values 𝑣𝑖𝑗𝑘. At the beginning of
each TTI, 𝐕 will hold a copy of 𝐏. Resources are allocated within the
current TTI according to the temporary matrix. After a resource block is
allocated, 𝐏 is updated following Eq. (4). When a UE empties its queue
within a TTI, all pairs containing this UE have their probabilities in 𝐕
set to 0. This insures that this UE will not get allocated anymore re-
sources within the same TTI. The values of the remaining probabilities
are normalized, 𝑖.𝑒., each probability, for a certain resource block, is
divided by the sum of the remaining probabilities. This keeps the sum
of probabilities equal to one, unless of course all UE queues are empty.
New arrivals are expected at the beginning of the new TTI (at least a
limited number of bits). All UEs are now back in the scheduling process
and the temporary matrix 𝐕, used for allocation, gets its values from the
up-to-date 𝐏. The pseudo-code for the reinforcement learning algorithm
is presented in Algorithm 1. Note that the total number of possible UE
pairings  is defined as the number of uplink UEs multiplied by the
number of downlink UEs.

Algorithm 2 RL Scheduling Algorithm
1: Requires: Set of states , actions , and rewards 
2: Input: Learning rate 𝛽 ∈ [0,1]
3: Initialize: 𝑝𝑖𝑗𝑘(1)←

1


, ∀ (𝑖,𝑗,𝑘) ∈ ( × ×)
4: for TTI 𝑡=1,. . . ,𝑇
5: 𝐕 ← 𝐏
6: for 𝑘=1,. . . ,𝐾
7: Draw a pair according to the probabilities 𝐕
8: Allocate 𝑘 to the drawn UE pair (𝑖′𝑗′)
9: Compute  = 𝑇𝑖′𝑗′∕𝑇𝑚𝑎𝑥

10: for (𝑖,𝑗,𝑘) ∈ ( × ×)
11: if 𝑘𝑖𝑗== 1
12: 𝑝𝑖𝑗𝑘(𝑡 + 1) ← 𝑝𝑖𝑗𝑘(𝑡) + 𝛽(1 − 𝑝𝑖𝑗𝑘(𝑡))
13: else
14: 𝑝𝑖𝑗𝑘(𝑡 + 1) ← 𝑝𝑖𝑗𝑘(𝑡) − 𝛽𝑝𝑖𝑗𝑘(𝑡)
15: end if
16: end for
17: if 𝑖′ emptied its queue
18: 𝑣𝑖′𝑗𝑘(𝑡) = 0, ∀ (𝑗,𝑘) ∈ ( ×)
19: Normalize 𝐕
20: end if
21: if 𝑗′ emptied its queue
22: 𝑣𝑖𝑗′𝑘(𝑡) = 0, ∀ (𝑖,𝑘) ∈ ( ×)
23: Normalize 𝐕
24: end if
25: end for
26: end for

4.2.2. Exploration and exploitation
Our proposal makes it feasible to account for dynamic traffic. With

UEs constantly leaving and joining back, the algorithm would not
always select the same UE pair for any resource block. Every allocation
the algorithm deems most suitable to maximize throughput values
is only temporary, and bound to change once the pair(s) exits the
allocation process or the radio conditions change. This makes our
reinforcement learning algorithm similar to that of an 𝜖-greedy one,
where the algorithm will go into exploration with a probability 𝜖 [36].
However, in our case, the value of 𝜖 is determined by the demand of
the UEs. For a low UE demand, 𝜖 is relatively high, and the algorithm
could fall back into exploration several times within the same TTI. In
the case of full buffer traffic, 𝜖 is equal to zero, and the algorithm would
never go into exploration. Since we implement a non-full buffer traffic
model, it is counter intuitive to manually assign a value for 𝜖.
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4.2.3. Online learning and dynamic radio conditions
As a result of shadowing and the time variant fast fading, any

suitable pair selected by the learning algorithm to maximize UE and
network throughput values, will not remain the best choice over the
following TTIs. The radio conditions of each UE pair are bound to
change from one TTI to another. In the case of non-full buffer traffic,
this does not pose a major problem. After all, the algorithm is bound to
regularly go into exploration mode. In all cases, our learning algorithm
cannot be expected to find the relatively best allocation within one
TTI. As such, it is correct to assume that the algorithm is learning the
average radio conditions of the UE pairs across the TTIs, rather than the
instantaneous ones. This is bound to be somewhat costly with respect
to a greedy allocation method with full CSI.

The dynamics of the network imply that the UE pair that would
maximize UE and network throughput on a certain resource block is
constantly changing. We show, via our simulations, that our algorithm
is capable of adapting to this change, as the allocation probabilities per
resource block are updated each TTI.

4.2.4. Positive reinforcement
In our proposal, we always use a positive payoff. Unless a selected

UE pair transmits zero bits, its probability of selection would always
increase, no matter how slightly, for the next TTI. In the context of
our simulation scenarios, we cannot determine if the number of bits
a certain UE pair sent/received is good enough or not. A UE pair
situated away from the BS might return a small reward, but it could
still be among the best performing pairs in the current network. Using a
negative payoff, 𝑖.𝑒., reducing the probability of selection for this pair,
ould in fact set the algorithm farther away from reaching its goal of
aximizing UE and network throughput values.

.2.5. Scheduling baseline
We seek to measure the efficiency and functionality of our proposal

s. a set of baseline scheduling techniques. In addition to the FD Max
um-Rate algorithm in [3], we simulate other scheduling algorithms we
ave previously worked on. First, we use a random allocation scheme
ased on the popular round robin allocation technique. The algorithm,
D Round Robin, will aim to allocate resources in turn, and equally,
mong randomly generated pairs of UEs. No other factor is taken
nto consideration. Secondly, we simulate a more fairness oriented
cheduling algorithm. It is made in reference to a baseline proportional
air algorithm. The main idea is to allocate resources to pairs of UEs
ased on their priorities. The priorities being a function of current and
istoric radio conditions. This algorithm can be seen in detail in our
rticle in [26]. Finally, we note that the FD Max Sum-Rate algorithm
as modified and adapted to our non-full buffer model. An optimal

ormulation of this algorithm can be seen in (5).

aximize
∑

𝑘∈

∑

𝑖∈

∑

𝑗∈
𝑧𝑖𝑗𝑘(𝑅𝑢

𝑗 (𝑖, 𝑘) + 𝑅𝑑
𝑖 (𝑗, 𝑘)), (5a)

ubject to
∑

𝑖∈

∑

𝑗∈
𝑧𝑖𝑗𝑘 ≤ 1, ∀𝑘 ∈ , (5b)

∑

𝑘∈

∑

𝑗∈
𝑧𝑖𝑗𝑘𝑇

𝑢
𝑖𝑗𝑘 ≤ 𝐷𝑢

𝑖 , ∀𝑖 ∈  , (5c)

∑

𝑘∈

∑

𝑖∈
𝑧𝑖𝑗𝑘𝑇

𝑑
𝑖𝑗𝑘 ≤ 𝐷𝑑

𝑗 , ∀𝑗 ∈ , (5d)

𝑧𝑖𝑗𝑘 ∈ {0, 1}, ∀𝑖 ∈  ,∀𝑗 ∈ ,∀𝑘 ∈ . (5e)

In the preceding problem 𝑧𝑖𝑗𝑘 is a binary variable which is equal
to one if uplink UE 𝑖 is paired with downlink UE𝑗 on RB 𝑘, and zero
otherwise. 𝑅𝑢

𝑗 (𝑖, 𝑘) is the rate of uplink UE 𝑖, paired with downlink UE
𝑗 on RB 𝑘. Similarly, 𝑅𝑑

𝑖 (𝑗, 𝑘) is the rate of downlink UE 𝑗, paired with
uplink UE 𝑖 on RB 𝑘. 𝑇 𝑢

𝑖𝑗𝑘 and 𝑇 𝑑
𝑖𝑗𝑘 represent the number of bits UE 𝑖

can transmit on RB 𝑘 and the number of bits UE 𝑗 can receive on RB
𝑘, respectively. 𝐷𝑢 and 𝐷𝑑 represent the demands of uplink UE 𝑖 and
6

𝑖 𝑗
Table 1
Simulation parameters.

Parameter Value

Cell specifications Single-Cell, 120, 500, 1000 m radius
Number of resource blocks 50
BS transmit power 24 dBm
Maximum UE transmit power 24 dBm
SIC value 1011 or 109

Number of UEs 5DL, 5UL or 10DL, 10UL
UE distribution Uniform
Demand throughput 4 Mbps
Fast fading Rayleigh. 𝜎 = 1
Shadowing Normal law. 𝜇 = 0 dB 𝜎2=10 dB
Path loss model Extended Hata path loss model
TTI duration 1 ms

downlink UE 𝑗, respectively. That is to say the number of bits in their
queues.

Eq. (5a) is the objective of the optimization problem, to maximize
the total sum-rate. Eq. (5b) indicates that an RB is allocated to at most
one UE pair. The equations in (5c) and in (5d) are the buffer constraints.
They verify that a UE is not allocated an RB it is not going to fully
utilize.

5. Simulation and results

We seek via our different simulation scenarios to address the va-
lidity and practicality of our machine learning scheduling proposal.
First, and as the research into FD communications shifts from micro
to macro cells, we assess the performance of our algorithm in a larger
cell scenario. Second, we test the limits of our proposal, and show that
with adequate parameters, it can match the performance of scheduling
with complete CSI. Additionally, we test our algorithm under dif-
ferent circumstances: variable UE traffic, increased UE numbers, low
self-interference cancellation values, and UE clustering among others.

The simulation parameters we used are presented in Table 1. The
channel gain takes into account the path loss, the shadowing and
the fast fading effects. The path loss is calculated using the extended
Hata path loss model [38]. The shadowing is modeled by a log-normal
random variable 𝐴𝑠 = 10(

𝜉
10 ), where 𝜉 is a normal distributed random

variable with zero mean and standard deviation equal to 10. The fast
fading is modeled by an exponential random variable 𝐴𝑓 with unit
parameter. This model is used for urban zones, and it takes into account
the effects of diffraction, reflection, and scattering caused by city
structures. In our work, each simulation run serves a set of snapshots of
the networks. Each snapshot has the UEs with different radio conditions
on different resources.

In assessing the performance of our algorithm, we do not take into
account the first few TTIs where the allocation process can be arbitrary.
In Section 5.1 of the simulations the value of 𝛽 is varied between 0.015
and 0.9 in order to study the significance of the learning rate. In the
remainder of the simulations, the value of 𝛽 is fixed at 0.015. This value
of 𝛽 guarantees the learning algorithm explores enough to find the pairs
that maximize UE and network throughput every time.

5.1. Effect of the learning rate 𝛽

5.1.1. Case of small cell
We seek to study the effect of varying the learning rate on the

performance of the algorithm. We consider a small cell of radius 120 m,
the cell has 10 UEs: 5 uplink and 5 downlink. The throughput demand
is 4 Mbps. The UE throughput values attained for 𝛽 = 0.1, 0.3, 0.5,
0.7, and 0.9 are plotted in the cumulative distribution function (CDF)
of Fig. 4.

For reference, a greedy FD Max Sum-Rate algorithm we enhanced

is also plotted. This algorithm allocates resources to UE pairs that can
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Fig. 4. Throughput as a function of the learning rate 𝛽, small cell.

get the highest throughput values. This makes it an ideal reference to
the performance we expect from an FD system which has complete
channel knowledge. Additionally, we propose and plot a random re-
source allocation scheme in our FD Round Robin algorithm, and a fair
allocation scheme in our FD Proportional Fair algorithm. For 𝛽 = 0.1,
around 70% of the learning algorithm UEs attained a throughput equal
to their demand of 4 Mbps. This is almost identical to the FD Max Sum-
Rate algorithm. As the value of 𝛽 increases, the number of UEs attaining
he nominal throughput value decreases. For 𝛽 = 0.9, only about 50%

of the simulated UEs attain a throughput equal to their demand. The
resource allocation process becomes near random for this value of 𝛽,
hence the similarity to the FD Round Robin algorithm. Moreover, the
plot for FD Proportional Fair contrasts the difference in objectives with
respect to our greedy algorithm. Only about 55% of the FD Proportional
Fair algorithm UEs got a throughput equal to the demand of 4 Mbps,
significantly lower than the 70% for our learning algorithm. However,
for all except one of the Proportional fair UEs, the lowest recorded
throughput value is 2.7 Mbps, significantly larger than 0.6 Mbps, the
lowest recorded value for our learning algorithm (for 𝛽 = 0.1). Our
learning based algorithm is greedy and seeks to extract the utmost
gain from the bandwidth, while FD Proportional Fair seeks to balance
between bandwidth efficiency, and achieving fairness between the UEs.

Finally, we note that the lower the value of 𝛽, the more likely it
is that the learning algorithm identifies the best pair to allocate each
resource block to. Nonetheless, it would take longer for the algorithm
to find this pair. That is to say that the higher the value of 𝛽 is the
quicker the algorithm can react to a change in the network, albeit at
the cost of making more incorrect scheduling decisions, with respect to
maximizing UE throughput values.

5.1.2. Case of large cell
Whilst FD communications are most suitable for small cells, the

current state-of-the-art cancellation technologies allow mitigating self-
interference by values upwards of 110 dB. This means that medium to
large cell scenarios are pretty feasible. We repeat our simulation from
the previous section, albeit with a cell radius of 500 m. This change
in cell size, with the transmission powers being fixed, is bound to put
more UEs in disadvantageous radio conditions. Cell edge UEs are more
likely to have low SINR values. A bad scheduling decision is now more
heavily punished. The results are shown in Fig. 5.

For 𝛽 = 0.1, about 30% of the UEs attained a throughput equal to
the demand. The FD Max Sum-Rate proposal attained a value close
to 47%. Similar to before, the higher the value of 𝛽, the lower the
7

performance of the algorithm. For 𝛽 = 0.5, only about 25% of the UEs l
Fig. 5. UE throughput as a function of 𝛽. 500 m cell radius.

attained a throughput equal to the demand. Nonetheless, the gains with
respect to HD wireless communications remain evident. HD Max Sum-
Rate UEs has more UEs attaining a throughput equal to the demand,
in comparison to our reinforcement learning proposal. Nonetheless, it
also has about 30% of the UEs with zero throughput. Almost none of
the service based learning UEs, regardless of the value of 𝛽, are denied
hroughput.

Additionally, we compare our machine learning solution to an FD
ax Sum-Rate algorithm simulation done without any information on

he UE-UE channels. (The method employed is illustrated in [26].) In
uch a case, almost 13% of the UEs were denied service, and 30% of
he UEs attained a throughput equal to the demand. The performance
f our algorithm for 𝛽 = 0.1 thus barely outperforms scheduling with
ncomplete CSI. As such, we lower the value of the learning rate and
imulate our learning algorithm for 𝛽 = 0.015. In this case, our proposal
an better match the performance of scheduling with complete CSI with
bout 44% of the UE attaining a throughput equal to the demand and
ess than 1% of them being denied throughput.

.1.3. Selection of the value of the learning rate
In our aim to deduct the best value for 𝛽 we simulate our algorithm

or different values of the learning rate 𝛽 and record how the algo-
ithm would fair in terms of total network throughout with respect to
cheduling with complete CSI, in the deterministic time slot. Fig. 6 has
he results for 𝛽 = 0.015, 0.1, and 0.5. In this simulation, and for the
urpose of better distinguishing between the results, the radius of the
ell is increased to 1 km. A wrong scheduling decision could now be
ore costly for the network.

For 𝛽 = 0.5, the algorithm will reach an efficiency of about 75%
n 200 TTIs. It no longer improves. For 𝛽 = 0.1, the algorithm will
ake about 800 TTIs to reach an efficiency of 84% where it no longer
mproves on average. For 𝛽 = 0.015, the algorithm is shown to be
onstantly improving. For this simulation scenario, it would reach
pwards of 95% efficiency at around 4000 TTIs. A lower value of 𝛽
ould eventually lead to better efficiency, but at the cost of requiring
ore time to do so.

Since the value of 𝛽 = 0.1 can barely outperform scheduling with
ncomplete CSI as illustrated in Fig. 5, a lower value of 𝛽 is required
or our macro-cell simulations. As such, for the remainder of the
imulations, the value of 𝛽 is set to 0.015.

.2. Performance evaluation as a function of time

At the beginning of the simulation, the allocation process by our

earning algorithm can be said to be arbitrary. Nonetheless, each TTI
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Fig. 6. Efficiency of the algorithm as a function of time and 𝛽.

Fig. 7. Efficiency of the learning algorithm as a function of time.

he algorithm learns how to better allocate resources in a manner that
aximizes UE and network throughput. For a 500 m cell radius, and a

alue of 𝛽 = 0.015, we track the progress of our algorithm as a function
f time.

We define the efficiency of the algorithm as the total network
hroughput attained by the learning algorithm divided by that attained
y the FD Max Sum-Rate algorithm (with complete CSI). As explained
efore, we consider the latter to be a reference due to the similarity
n objectives. Fig. 7 has a plot with the results. 10 TTIs, equivalently
0 ms, are enough for the algorithm to reach a 73% efficiency. At
000 TTIs, or 1 s, the learning algorithm achieves about 95% of the
hroughput attained by FD Max Sum-Rate. From these results we can
onclude that the learning algorithm can respond quickly to changes in
he network, whether caused by dynamic radio conditions, UEs leaving
r rejoining the network, or even UE mobility.

.3. Effect of varying user characteristics

In this section, we vary different UE characteristics from randomiz-
ng traffic to clustering UEs and increasing UE numbers, and study the
ffects they have on UE performance. We show that regardless of the
cenario at hand, our learning algorithm can mimic the performance of
cheduling with complete CSI with high efficiency, and that it remains
ore profitable than scheduling without information on the inter-UE
8

hannels.
Fig. 8. Effect of randomized UE traffic.

5.3.1. Effect of randomized user demand
In this subsection, we aim to study the effect of different UE

throughput demands on the performance of our reinforcement learning
algorithm. To this end, we simulate the learning algorithm vs. FD
Max Sum-Rate in a 500 m radius cell scenario with 10 UEs present.
The throughput demand for each UE is set to random value uniformly
chosen between 0 and 4 Mbps.

The performance of our reinforcement algorithm mimics that of
greedy allocation with complete CSI, as illustrated in Fig. 8. Nonethe-
less, it is also evident that it lags in performance. The reinforcement
learning algorithm would lose up to 9% in total network throughput in
comparison. On the other hand, scheduling without inter-UE channel
information costs 11% in network throughput efficiency and denies
throughput to about 5% of the simulated UEs. This scenario is not very
punishing to scheduling with incomplete CSI as many UEs have low
throughput demands.

5.3.2. Performance assessment in the case of UE clustering
Additionally, we seek to study the effect of UE clustering on the

performance of our algorithm. For a cell of 500 m radius, the UEs are
all placed within 200 m distance from the BS. The SIC value is returned
to the relatively good value of 1011, and the remainder of the simulation
parameters are left unchanged. Following the SINR calculation for
downlink UEs in Eq. (2), the proximity of uplink and downlink UEs (as a
result of UE clustering) degrades the radio conditions of downlink UEs.
A wrong scheduling decision is bound to now have a more grievous
effect on the performance in general, and on downlink UEs throughputs
specifically.

Fig. 9 shows the CDF plots of the downlink UE throughput values
for FD Max Sum-Rate scheduling with both complete and incomplete
CSI, and that of our learning proposal as well. The complete CSI FD
Max Sum-Rate scheduling algorithm edges out the learning algorithm
in terms of UEs attaining a throughput equal to the demand (35%
to 28%). The network would lose about 10% in total throughput.
Nonetheless, this loss for the learning algorithm is mainly found in
downlink UEs which on average deliver around 86% of the throughput
attained by their FD Max Sum-Rate counterparts. Uplink UEs however
almost match their counterparts with around 97% of the throughput.
This form of UE clustering incurs a small performance penalty on our
reinforcement learning scheduling proposal. Nonetheless, Max Sum-
Rate scheduling with incomplete CSI incurs a higher loss. In this
case, 18% of the simulated downlink UEs are denied any resources
and the network loses 22% in terms of total throughput efficiency in
comparison to scheduling with complete CSI.
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Fig. 9. Effect of clustering on downlink UE performance.

Fig. 10. Effect of UE mobility on performance.

.3.3. Effect of UE mobility on performance
In this section, we study the effect of mobile UEs on the performance

f our algorithm. We consider a random walk model [39] in deter-
ining the movement of the UEs. Each TTI, the UEs will move from
current location to a new one by choosing a speed and a direction

andomly from the uniform intervals [𝑠𝑝𝑒𝑒𝑑𝑚𝑖𝑛,𝑠𝑝𝑒𝑒𝑑𝑚𝑎𝑥] and [0,2𝜋],
espectively. The minimum and maximum speeds are chosen as the
verage velocity of a walking person (0.5 m/s) and the average velocity
f a moving car (20 m/s), respectively. As the positions of the UEs
hange, their individual radio conditions will vary. This variation is
elated to their proximity to the BS, as well as to the resulting changes
n the shadowing and the fast fading effects. We simulate our learning
lgorithm alongside FD Max Sum-Rate in both complete and incomplete
SI scenarios. The simulation is done with 10 UEs present in a 500 m
adius cell. Fig. 10 has a CDF plot of the resulting UE throughputs.

Our algorithm shows more UEs attaining the throughput demand
40% to about 35%). Nonetheless, on average FD Max Sum-Rate UEs,
cheduled with complete CSI, will get higher throughput values. It has
median UE throughput value equal to about 3.2 Mbps compared to
2.6 Mbps median value for our learning algorithm. UE mobility will

orce erroneous decisions (with respect to maximizing UE throughput)
nd incite changes in performance for both algorithms. However, there
s no noticeable added degradation in performance for our proposal
n comparison to scheduling with complete CSI, and with respect to
9

Fig. 11. UE throughput as a function of UE numbers.

previous scheduling scenarios. Our learning algorithm can adapt over
time to changes in UE radio conditions, limiting its losses to about
10% in total network throughput. In comparison, scheduling without
information on the inter-UE channels causes higher losses in efficiency.
Around 20% of the UEs in that case attain a throughput of 0 Mbps and
the total efficiency of the algorithm drops to around 79%.

5.3.4. Effect of an increase in the number of UEs
We seek to study the effect of increased UE numbers in the cell on

the performance of our proposal. The number of UEs is increased to
20: 10 uplink and 10 downlink. The number of resource blocks is also
doubled. Our aim is to study how the learning algorithm copes with
increased scheduling options and not to increase the network load. The
cell radius is 500 m and the SIC value remains at the relatively good
value of 1011. The throughput demand is 4 Mbps and the learning factor
𝛽 is set to 0.015. Accordingly, there are 100 different possible pairing
scenarios. We simulate the learning algorithm vs. the FD Max Sum-Rate
proposal for both scenarios of complete and incomplete CSI.

Fig. 11 has the CDF plot of the corresponding UE throughputs.
Around 45% of the FD Max Sum-Rate UEs, simulated with complete
CSI, attained a throughput equal to the demand, compared to 38% for
the learning algorithm. Around 14% of the former UEs were completely
denied throughput compared to none in the case of the learning algo-
rithm. Our proposal makes good enough scheduling decisions to mimic
the FD Max Sum-Rate algorithm with complete CSI. The algorithm will
lose a small part of the efficiency in terms of total network through-
put. Arguably, this is a trade-off between efficiency and a more fair
resource allocation. Furthermore, we simulate how the FD Max Sum-
Rate algorithm would fair if the inter-UE channel information was not
available. In such a case, almost 30% of the UEs are completely denied
throughput. Additionally, every simulated UE attains a throughput
value lower than that achieved by our learning proposal. In terms of
total network throughput, our learning algorithm loses about 5 to 10%
in efficiency when compared to FD Max Sum-Rate scheduling with
complete CSI. Scheduling without complete CSI costs upwards of 22%.

5.3.5. Scalability of the problem
Furthermore, we look at how an increase in the number of UEs

in the network affects the time needed for the algorithm to become
efficient. Fig. 12 has a plot detailing the number of TTIs needed for
our learning algorithm to reach 90% efficiency (with respect to FD Max
Sum-Rate with complete CSI).

As the number of UEs in the network increases, more time is
required to reach the 90% efficiency mark. At 20 UEs 3000 TTI are
needed. At 60 UEs, about 8000 TTIs are needed. Nonetheless, with 1
TTI equaling 1 ms, the problem remains scalable even as the number

of UEs in the network increases.
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Fig. 12. Number of TTIs needed to attain 90% efficiency as a function of the number
of UEs.

Fig. 13. Effect of low SIC on UE performance.

.4. UE performance under low SIC

We lower the value of the SIC factor to 109. With 10 UEs present
in a 500 m radius cell, the remainder of the simulation parameters
remain unchanged as above. This is bound to negatively impact the
performance of uplink UEs in the network as their SINR values degrade
(see 5.3.1). Multiple uplink UEs, especially those on the cell borders,
would now suffer from bad radio conditions. An incorrect scheduling
decision, with respect to maximizing UE and network throughput,
made by the learning algorithm would be more severely punished than
before.

Fig. 13 has box plots [40] of the resulting UE throughput values
for our reinforcement learning algorithm and FD Max Sum-Rate, both
with and without complete CSI. Both our algorithm and Max Sum-
Rate scheduling with complete CSI show again a similar distribution
of UE throughputs with maximums equal to the demand, and min-
imums equal to zero. Nonetheless, the FD Max Sum-Rate algorithm
with complete CSI has more UEs achieving a throughput equal to
the demand, and fewer ones attaining zero throughput. The increased
cost on scheduling errors incurred by lowering the SIC factor are
visible on the network performance as a whole, where the learning
algorithm would lose up to 19% in total network throughput with
respect to scheduling with complete CSI. This is not a significant drop
in performance. Nonetheless, uplink UEs are the most affected by this
degradation. Downlink UEs scheduled by our learning algorithm attain
throughput values, on average, equal to 97% of those achieved by
10
Table 2
Efficiency with respect to scheduling with complete CSI.

RL algorithm Incomplete CSI

Randomized demand 91% 89%
Clustering 90% 78%
Mobility 90% 79%
Increased UE numbers 93% 78%
Low SIC 79% 68.5%

their complete CSI FD Max Sum-Rate counterparts, but uplink UEs only
manage around 60%. In comparison to scheduling with incomplete
CSI, the median UE throughput value for our algorithm sits at about
0.75 Mbps. For the former it is about 0.4 Mbps. In addition, uplink
UEs scheduled without information on the inter-UE channels manage
only about 40% efficiency in comparison to scheduling with complete
CSI.

5.5. Comments on the results

In Table 2, we summarize the performance of our algorithm with re-
spect to our simulations on scheduling with complete CSI and compare
it to scheduling with incomplete CSI.

We highlight the different scenarios we considered to test the effi-
ciency of our algorithm. They include randomized demand, UE cluster-
ing, UE Mobility, UE densification, as well as low self-interference can-
cellation capabilities. Our algorithm significantly outperforms schedul-
ing with incomplete CSI in all cases. As the simulation environment
gets more difficult (more devices, less resources, etc...), the better our
proposal performs with respect to scheduling with incomplete CSI.

6. Conclusion

In this paper, we present a reinforcement learning based approach
to scheduling in FD-OFDMA wireless networks. Our main objective is
to avoid the added intricacies of scheduling in FD wireless networks.
Specifically, we let go the unrealistic assumption of perfect CSI, as
well as the regularly expected knowledge of all UE-to-UE channel
states. Our algorithm is queue-aware and factors dynamic arrivals into
account. We detail the main challenges facing a machine learning
scheduling proposal, focusing on the effects of non-full buffer traffic
and dynamic radio conditions on the performance of the algorithm.
We test our proposal in multiple scheduling scenarios from randomized
UE traffic, to UE clustering and in the presence of low SIC. While UE
clustering degrades the performance of downlink UEs, and low SIC that
of uplink UEs, we show that our learning proposal still performs well
in terms of UE and network throughput. Furthermore, we show that
in the case of mobile UEs, no added degradation in performance is
incurred. We accordingly verify the validity of our proposal regardless
of any obstacles facing the scheduling task. In our proposal, inter-cell
interferences are neglected. We assumed that inter-cell interference
coordination algorithms are in place. To fully assess the impact of the
FD features and resulting interferences, we focused on a single-cell
scenario. In future works, we will tackle multi-cell scenarios and the
possible implementation of machine learning based scheduling with
multi-cell coordination in a realistic setting.
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