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Abstract—For a seamless deployment of the Internet of Things
(IoT), self-managing solutions are needed to overcome the chal-
lenges of IoT, including massively dense networks and careful
management of constrained resources in terms of calculation,
memory, and battery. Leveraging on artificial intelligence will
enable IoT devices to operate autonomously by using inherently
distributed learning techniques. Fully distributed resource man-
agement will free devices from draining their limited energy
by constantly communicating with a centralized controller. The
present work is devoted to a specific IoT context, that of
LoRaWAN, where devices communicate with the access network
via ALOHA-type access and spread spectrum technology. Con-
current transmissions on different spreading factors increase the
network capacity. However, the bottleneck is inevitable with the
expected massive deployment of LoRa devices. To address this
issue, we resort to the popular EXP3 (Exponential Weights for
Exploration and Exploitation) algorithm to steer autonomously
the decision of LoRa devices towards the least solicited spreading
factors. Furthermore, the spreading factor selection is cast as a
proportional fair optimization problem used as a benchmark for
the learning-based algorithm. Extensive simulations were run in
a realistic environment taking into account physical phenomena
in LoRaWAN such as the capture effect and inter-spreading
factor collision, as well as non-uniform device distribution. In
such a realistic setting, we evaluate the performances of the
EXP3.S algorithm, an efficient variant of the EXP3 algorithm,
and show its relevance against the fair centralized solution and
basic heuristics.

Index Terms—LoRAWAN, reinforcement learning, EXP3,
Spreading Factor selection.

I. INTRODUCTION

The long-term goal of the Internet of Things is to provide
low-cost, large-scale, and ultra-durable connectivity for every
object that can benefit from being connected. LoRaWAN [1],
[2] is a well-known IoT solution over the unlicensed band with
a simplified connectivity procedure. It is designed to allow
low-powered devices to communicate with the access network
over long-range wireless connections. Transmission is possible
on one of the 8 channels (frequency plans in Europe [1])
and with one of the 6 available spreading factors. A collision
will only occur when two or more devices select the same
channel and spreading factor (SF) [3]. However, the latter is
inevitable due to the use of random access, the shortage in
radio resources and the expected massive deployment of LoRa
devices. Accordingly, astute resource management is vital to
increase the capacity of LoRaWAN. However, only resource

allocation schemes that reduce drastically signaling with the
access network in order to offer ultra-long battery lifetimes
to LoRa devices are feasible. Therefore, each device must be
able to select adequate spreading factors autonomously.

In addition, even with different SFs, a collision between
signals on the same channel can occur due to the imperfect
orthogonality of SFs, called inter-Spreading Factor collision
[4], [5]. Fortunately, if there are concurrent transmissions on
the same resource (the same SF and channel), the gateway
(GW) is able to successfully receive one of them if its
Signal-to-Interference-and-Noise-Ratio (SINR) is higher than
a threshold of 6 dB, for any SF. The latter is deemed capture
effect [2], [3]. In this paper, we will assess the impact of
both phenomena, namely the capture effect (CE) and inter-SF
collision, that were overlooked in the literature.

Recent work on distributed selection of radio resources in
LoRaWAN had recourse to the Multi-Armed Bandit (MAB)
problem [6], [7]. Each end-device is considered as an in-
telligent agent that chooses a given SF and/or channel to
minimize its cumulative regret in comparison with the best
fixed allocation that renders the highest reward.

In general, there are two broad MAB models: stochastic
and non-stochastic [8]. For stochastic MAB, the reward of
each strategy is drawn according to a given probability density
function (PDF). Conversely, for non-stochastic MAB, no sta-
tistical assumptions are made about the generation of rewards.
In particular, adversarial MAB is a non-stochastic MAB where
rewards are chosen by an adversary. This formulation can
model any form of non-stationarity and is hence adequate for
the problem at hand.

In [6], the authors assumed that all end-devices use the same
spreading factor and adopted the stochastic MAB algorithm to
determine the channel selection. However, such an assumption
is impractical in LoRa network due to the mutual coupling
between multiple intelligent end-devices. The work in [7] has
explored adversarial MAB for resource allocation in an IoT
network. However, the capture effect and inter-SF interference
were not taken into consideration. More importantly, only
uniform device distribution is considered. In this work, we
assess the impact of realistic non-uniform device distribution
where smart distributed resource allocation becomes crucial.

In this paper, as the distributed selection of the least con-
gested SFs by uncoordinated devices is appropriately modeled



by the adversarial MAB problem, we resort to the popular
EXP3 (Exponential Weights for Exploration and Exploitation)
algorithm [9]. The goal of EXP3 is to steer autonomously the
decision of each LoRa end-device towards the least solicited
SF while ensuring reactivity to the possible changes that can
occur in the common resource usage. In particular, we use the
EXP3.S [10], a computationally efficient version of EXP3. We
show that the reinforcement learning approach is much more
efficient in minimizing the number of collisions, as well as
improving the throughput of LoRa network, in comparison
with a uniform distribution or a trivial random distribution
over the set of SFs. More importantly, we define a proportional
fair optimal problem for the SF selection as a benchmark for
the EXP3.S algorithm and show that the latter displays little
discrepancy with the optimal problem.

The rest of this paper is organized as follows. The system
model is presented in Section II. The optimal formulation for
the spreading factor selection is casted in Section III. In Sec-
tion IV, a distributed learning-based approach is investigated
to minimize the number of collisions for LoRa end-devices,
magnified by inter-SF collision and dense deployment. Perfor-
mances of the proposed approach are evaluated in Section V.
Conclusion is given in Section VI.

II. THE SYSTEM MODEL

In this paper, we consider a LoRaWAN-type network com-
posed of one gateway located at the center of a disc-shaped
network of radius R, and N end-devices. Communications in
LoRaWAN occur in one of the 8 channels in the public ISM
band; each channel has a bandwidth of 125 KHz in Europe
(see [1]). High resiliency to noise and interference is essential
to operate efficiently in the ISM band. To this end, the chirp
spread spectrum modulation is used in LoRa, which enables
signals with different spreading factors SF ∈ S = {7, ..., 12} to
be distinguished and received simultaneously, even if they are
transmitted at the same time and on the same channel. Lower
SFs lead to higher transmission rates and shorter transmission
time but require a higher SNR (Signal to Noise Ratio). The
sensitivity of LoRa transceivers and the reception threshold
are given in Table I. Following [3], a collision occurs when
two or more devices select the same channel and spreading
factor. However, perfect orthogonality is not guaranteed, and
interference among communications using different SF, called
inter-SF collision, must be accounted for [4]. In fact, the GW
can successfully receive a signal using SF s if its power is
higher by a given threshold (given in Table I) than the total
interference generated by concurrent signals using SF s′ ! s.

Furthermore, if there are several signals transmitted with the
same SF and on the same channel simultaneously, the GW is
still able to successfully receive the strongest signal if its SINR
is higher than a threshold of 6 dB. This phenomenon is known
as the capture effect [2], [3]. Therefore, apart from considering
the collisions due to selecting the same SF and channel, we
also consider the impact of the inter-SF collision and the
capture effect for their relevance on LoRaWAN performances.
Besides selecting a SF and a channel, each end-device selects

a transmission power between 2 dBm and 14 dBm. Due to the
space limitation of the paper, we assume that all end-devices
use the same channel, and with maximal transmission power.

Table I: LoRa characteristics at BW = 125 kHz [1], [4]

SF Bit- rate
[kbps]

Receiver
Sensitivity
[dBm] [1]

Reception
Thresh.
[dB]

Inter-SF collision
Thresh.
[dB] [4]

7 5.47 -123 -6 -7.5
8 3.13 -126 -9 -9
9 1.76 -129 -12 -13.5

10 0.98 -132 -15 -15
11 0.54 -134.5 -17.5 -18
12 0.29 -137 -20 -22.5

We note that adopting the propagation model in [4] renders
a small scale network where the signal range attains 4.5 Km.
This model suits the paper purpose in obtaining a high device
density akin to that of LoRaWAN while using a relatively
small number of devices (N = 100).

To ease the performance assessment and the analysis of
packet collision, we assume that all end-devices have the
same packet generation rate of λ packets per hour and that
all packets have the same length of l bytes. As stated in
the LoRaWAN specifications [1], after sending a packet, the
end-device waits for an acknowledgment (ACK) sent by the
GW. We assume that there is no collision between the ACK
and uplink packets. In fact, the ACK can be delivered on a
separate channel with a higher duty cycle. Hence, if an end-
device receives an ACK for its transmitted packet, then either
there was no collision, or the capture effect has occurred.
Conversely, when ACK is not received, either the packet was
lost due to collision with another packet transmitted with the
same SF, or due to the inter-SF collision.

III. OPTIMAL PROPORTIONAL FAIR SPREADING FACTOR
SELECTION IN LORAWAN

In this section, the spreading factor selection is casted
as an optimization problem for LoRaWAN, steered by the
GW or the Network Server. A centralized solution to the SF
selection problem is complex and necessitate signaling that
will drain the energy of LoRa devices, supposed to have ultra-
durable battery life. Thus, the centralized solution will be used
as a benchmark for the distributed learning-based algorithm
sketched below. Note that all end-devices have the same packet
generation rate of λ packets per hour, and the same packet
length of l bytes. Transmission attempts occur according to
a Poisson distribution of parameter λ. We denote by Ns the
maximum number of devices that can use SF s and above. Let
Ts be the time needed to transmit a packet of l bytes on SF s
(time on air). Then, given a duty cycle limitation of d = 1%,
the packet generation rate for each device operating on SF s
must verify λTs ≤ d = 1% [1].

We suppose that we have an external traffic (e.g. devices
belonging to a different operator) of intensity λes packets per
second on spreading factor s. Let ps be the ratio of devices



using SF s and above. We can write the normalized channel
traffic on SF s as follows:

Gs = (λ · N · ps + λes )Ts (1)

LoRaWAN uses a simple ALOHA-based algorithm without
sensing, doing away with synchronization and access reser-
vation. Therefore, according to the Poisson traffic arrival, the
normalized total throughput G of the network is given by:

G =
S∑
s=1

Gs exp(−2Gs) (2)

We consider a network utility under proportional fairness
for the normalized throughput of the network. While con-
ventional resource allocation usually aims at maximizing the
total normalized throughput in (2), it may deprive devices
far away from the GW from having fair access to radio
resources. Hence, in this work, we privilege the device’s
interest by relying on the proportional equity incarnated by
the logarithmic function as in [11]. Accordingly, the spreading
factor selection problem consists in computing the ratios ps
that maximize the following utility function:

U =
S∑
s=1

log (Gs exp(−2Gs)) (3)

Such a utility function ensures a proportional fair normalized
throughput, which strikes a good balance between fairness and
efficiency. The optimization problem is as follows: (4):

(P) : max
ps

S∑
s=1

log (Gs exp(−2Gs)) (4a)

subject to
S∑
s=1

ps ≤ 1, (4b)

S∑
i=1

pi ≤
S∑
i=1

Ni

N
, ∀s = 1, . . . , S. (4c)

The utility maximization objective is subject to constraint
(4b) ensuring that the sum of ratios does not exceed 100%.
Constraints (4c) ensure that the number of devices selecting
SF s and above does not exceed the maximum number Ns

for each SF s. The optimization problem (4) is convex with a
concave objective function and linear constraints.

IV. DISTRIBUTED LEARNING FOR SPREADING FACTOR
SELECTION IN LORAWAN

We describe the fully distributed learning-based algorithm
suitable for LoRaWAN. Any end-device is considered as an
intelligent agent that needs to choose at a iven time t a
convenient spreading factor SF s or equivalently a strategy
s(t) = {SFs}. Let S = {7, . . . , 12} be the set of spreading
factors. We consider a realistic setting where devices are
unaware of their position and channel conditions, and thus
unaware of their minimal SF. Therefore, they will select any
SF s ∈ S. Accordingly, the strategy space of any device is
S. At each iteration t (at packet arrival), each device selects

a strategy s(t) governed by some distribution over S, which
yields a reward rs(t) ∈ {0, 1}. Successful packet transmission
(acknowledged by the GW) yields rs(t) = 1. In case of packet
loss, rs(t) = 0.

Such type of learning corresponds to the framework of the
Multi-Armed Bandit (MAB) problem [8] that only makes use
of local information available at the LoRaWAN end-device
level (received ACK). The result of the devised algorithm
in each device will be a set of SFs that suffers the least
from collisions. As the distributed selection of the best radio
resources by uncoordinated devices is appropriately modeled
by the adversarial MAB problem, we have recourse to the pop-
ular EXP3 algorithm [9], [10]. However, the EXP3 algorithm
has an exponential complexity with the size of the strategy
set, leading to prohibitive convergence times. Thus, we adopt
a computationally efficient version of EXP3, known as the
EXP3.S [10], to determine the best SF selection.

At each iteration t (at packet arrival), each device j selects
a strategy s(t) with distribution pj

s(t) over S, which renders
reward rs(t). The goal of any device j is to update pj

s(t) in
order to get the largest reward at horizon T in comparison
with the best fixed strategy. We initialize the algorithm with
all weights equal to 1, and with the uniform distribution
pj
s(0) = 1

K , where K is the cardinal of strategy set S. Further,
in Algorithm 1, e is the base of the natural logarithm, i.e.,
e ≈ 2.7182818 . . ., and α is an input parameter used to adjust
the weights at each iteration t. Note that in case of packet loss,
rs(t) = 0 and no update will take place for the distribution
strategy, and hence, no learning either.

V. PERFORMANCE EVALUATION

We consider a LoRaWAN-type network with 1 GW and
N = 100 end-devices distributed in a disc of radius 4.5 km.
When we only consider path loss, the network is composed of
concentric discs corresponding to different receiver sensitivity
values (given in Table I) and hence to different minimal
spreading factors. Accordingly, the closest devices to the GW
have a choice spanning from 7 to 12, whereas the furthest away
devices are constrained with SF = 12, as shown in Figures 1
and 2. In our simulations, we consider also the log-distance
path loss model with flat fading, where the reference distance
d0 = 40m, the path loss at the reference distance PL0 = 107.41
dB.To evaluate the impact of devices distribution in the
network, we consider two scenarios: a uniform distribution
of devices, and a non-uniform distribution where we choose
at random to crowd a given region (with SF = 10).

We will evaluate the EXP3.S performance in a real setting
that accounts for both capture effect and inter-SF collision.
Further, to fully assess the reinforcement learning based algo-
rithm, we will compare EXP3.S against the fair centralized
algorithm presented in Section III, but also against simple
algorithms such as i) the uniform SF distribution where each
device selects the SF according to a uniform distribution over
S, and ii) the random distribution where each device selects
the SF according to a Gaussian distribution.



Input : Let SF s ∈ S be the strategy chosen by
device j.

Initialization:
• Set the initial weights ω j

s(0) = 1, ∀s ∈ S, ∀ j ∈ N and
the uniform distribution of strategies per device
pj
s(0) = 1

K .

• Set the learning rate γ = min
{
1,
√

K log(KT )
T

}
.

• Set the input parameter α = 1/T .
for t = 1 to T do

initialization ;
foreach end-device j do

At time t, draw strategy s ∈ S according to the
distribution pj

s(t) ;
if Transmit then

Receive reward:

r j
s (t) =

{
1 if ACK is received,
0 otherwise.

Update:

ω j
s(t + 1) =ω j

s(t) exp
( γr j

s (t)
K · pj

s(t)
)
+

eα
K

S∑
s=1
ω j
s(t)

pj
s(t + 1) =(1 − γ) ω j

s(t + 1)∑K
s=1 ω

j
s(t + 1)

+
γ

K

end
end

end
Algorithm 1: EXP3.S algorithm for fully distributed SF
allocation in LoRaWAN

We develop a discrete-event simulator in Python with the
Simpy library [12]. It is a flexible simulation tool that captures
specific LoRa link behavior for multiple network settings with
the impact of capture effect and inter-SF collision. For each
scenario, the time horizon for simulation is set to T = 107

iterations. The 1% LoRaWAN duty cycle limitation [1] is
respected by setting the packet generation rate of each end-
device to λ = 15 packet/hour. Packets are generated with
exponential interarrival. The other simulation parameters are
presented in Table II.

Table II: Parameters for performance analysis.

Parameters Values

Area Disc of radius 4.5 km
Packet length 50 bytes
Bandwidth (BW) 125 kHz
Code rate 4/5
Frequency set 868100 Hz
Capture Effect Threshold 6 dB
Inter-SF Collision Threshold Table I
Transmission Power 14 dB

Figure 1: Impact of uniform distribution on SF selection

Figure 2: Impact of non-uniform distribution on SF selection

A. Spreading factor selection for EXP3.S

Figures 1 and 2 display the choice of spreading factors
according to the EXP3.S algorithm 1 by devices uniformly
and non-uniformly distributed respectively. The results are
obtained at the end of horizon time (T = 107 iterations). One
sees that the choice of spreading factors by each end-device
depends on its location and on the distribution of other devices
in the network (proximity of other devices).

For the uniform distribution, devices in outer regions, i.e.,
regions which receiver sensitivity corresponds to spreading
factors equal to or higher than 8, usually choose the SF cor-
responding to their region (their smallest feasible SF, yielding
the highest bit rates). Conversely, devices in the region of SF
7 load balance their traffic between spreading factors 7 and
8, depending on their distance to the GW and the relative
distances of other competing devices. In fact, by displaying
in Figure 3 the strategy evolution of two randomly chosen
devices, we can see that one device (shown in the upper figure)
favors SF = 7 over SF = 8 (with probability 0.8), while the
other device (shown in the lower figure) equally shares its
traffic on both SFs.

For the non-uniform distribution, the same trend is ob-
served in the central region with minimal SF = 7, but more
importantly, we can see that devices in the crowded region



Figure 3: Uniform distribution: strategy evolution for two
devices in central region

Figure 4: Non-uniform distribution: strategy evolution for two
devices in crowded region

partake their traffic on their three feasible SFs: 10, 11 and
12. This behavior shows the relevance of an intelligent radio
resource allocation. In particular, we display in Figure 4 the
strategy evolution of two randomly chosen devices in region
of SF = 10, that are closeby. We can see that the first device
(in the upper figure) chooses SF = 10 with probability 0.7 and
SF = 11 with probability 0.3, while the other device (in the
lower figure), that initially took similar decisions, finally opted
for SF = 12 to shield itself from the harmful interferences
generated by its direct neighbour.

In both figures 3 and 4, we note the convergence of the
EXP3.S algorithm for spreading factor selection. Convergence
times are long, in the order of 30 kHours. We notice that
convergence for devices in the outer region is faster than for
those in the inner regions, because the latter have more feasible
strategies. Finally, to gauge the impact of capture effect, we
show in Figure 5 the SF constellation for the uniform distri-
bution (upper figures 5b and 5a) and non-uniform distribution
(lower figures 5d and 5c). We can see that in both geographical
distributions, devices load balance their traffic on more SFs
when the CE taken into account, which enhances performances

(a) Uniform distribution with CE (b) Uniform distribution w/o CE

(c) Non-uniform dist. with CE (d) Non-uniform dist. w/o CE

Figure 5: A snapshot of SF selection for EXP3.S algorithm at
t = 107, w/o CE

as will be highlighted in the next subsections.

B. Successful Transmission Rate
In this subsection, we evaluate the rate of successfully

received packets. In order to gain more insight on the impact
of intelligent devices with learning SF capabilities on the
performance of LoRaWAN, we consider three scenarios with
three different ratios of intelligent devices where 0%, 50% and
100% of end-devices use EXP3.S algorithm for their spreading
factor selection. Non-intelligent devices adopt either a uniform
strategy or a random strategy for SF selection.

Figure 6 shows the packet reception rate PRR for the net-
work in presence of capture effect and inter-SF collision. We
can see clearly that the packet reception rate of the system with
distributed learning is significantly increased compared to the
uniform SF selection and random SF selection. In addition, the
larger the number of intelligent end-devices using distributed
learning, the higher the packet reception rate. We note that in
the uniform distribution, the PRR gets close to 0.9, while in
the non-uniform case, PRR surpasses it owing to the increased
efficiency brought by astute SF allocation. Furthermore, we
observe that taking into account CE and inter-SF collision
leads to a small increase in the packet reception rate. This
increase is small since the network is sparse. However, when
the device density increases, the impact of CE and inter-SF
collision will increase, leading to a scalability limit.

Recall that convergence times are long, in the order of
30 kHours. However, the packet reception rate PRR of the



Figure 6: Packet reception rate: uniform (upper figure) vs. non-
uniform (lower figure) distribution

network with distributed learning algorithm can reach 0.8 for
the uniform case and 0.9 for the non-uniform case in an
acceptable time (less than 10 kHours). Such time duration
is acceptable for a static setting that is common in wide
area IoT scenarios (in automated factories, smart cities, smart
agriculture, etc.).

C. Normalized Total Throughput

In the present subsection, we evaluate the total normalized
throughput, given in (2). Here, we compare the total normal-
ized throughput with that obtained with our fair proportional
optimal solution devised in (4). Figure 7 displays the average
normalized total throughput of LoRAWAN, with uniform and
non-uniform device distributions. We can see that the EXP3.S
algorithm shows small discrepancy with the optimal solution
when all devices are intelligent. Finally, we can see in the
non-uniform device distribution, the performance enhancement
brought by taking into account the inter-SF collision.

VI. CONCLUSION

In this paper, we investigated the pertinence of intelligent
radio resource allocation in LoRaWAN. We put emphasis
on spread spectrum allocation through reinforcement-based
learning, in a realistic setting that accounts for the capture
effect, collisions among spreading factors and non-uniform
device distribution. In particular, we applied the EXP3.S
algorithm to autonomously steer the decision of each device
towards the least congested SFs while ensuring reactivity to the
possible changes that can occur in the common resource usage.
Further, we devised an optimal fair centralized SF allocation
problem to use as a benchmark for the fully distributed EXP3.S
algorithm. Extensive simulations show that the distributed

Central i zed0. 359

Central i zed0. 349

Figure 7: Normalized Throughput: uniform (upper figure) vs.
non-uniform (lower figure) distribution

learning-based algorithm outperforms simple heuristics, and
shows small discrepancy with the centralized optimal solution
in terms of normalized total throughput.
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