
Demonstration of Segment Routing with SDN
Based Label Stack Optimization

Rabah Guedrez∗ Olivier Dugeon∗ Samer Lahoud† Géraldine Texier‡
∗Orange Labs, Lannion, France,

rabah.guedrez@orange.com, olivier.dugeon@orange.com
†*IRISA/Université de Rennes 1/Adopnet Team, Rennes, France, samer.lahoud@irisa.fr

‡IRISA/Télécom Bretagne/Adopnet Team, Rennes, France, geraldine.texier@telecom-bretagne.eu

Abstract—Segment Routing (SR) architecture is a promising
technology. It is being standardized in collaboration between
vendors and service providers. Through its simplistic control
plane and the reuse of existing data planes namely MPLS
and IPv6, SR helps operators to reduce the Operation Expense
(OpEx) and the Capital Expense (CapEx).

In the instantiation of SR over the MPLS data plane (SR-
MPLS), a SR path gets encoded as a label stack that the ingress
nodes push onto the client packet. However, the longer the path
in term of traversed nodes the bigger the stack gets. In this
demonstration, we couple the capabilities of an SDN controller
and a path encoding engine to reduce that size of the label stack
to express segment routing paths.

Index Terms—Segment Routing, MSD, MPLS, traffic engineer-
ing.

I. INTRODUCTION

Segment Routing (SR) architecture [1] got a lot of at-
tention especially from Service Providers (SP) as it reduces
the operation and management overhead. SR deployment is
very straight forward as it can be deployed with a software
upgrade. Therefore, SPs are not required to invest in new
hardware. Currently, the standardization efforts are directed
by the Service Provider’s use cases. Specifically, an important
focus on the SR-MPLS, given the amount of work conducted
by the IETF working groups. The focus on SR-IPv6 [2] comes
from content distribution actors such Google and Facebook
[2].

SR uses the source routing forwarding paradigm. In fact,
a SR Path (SRP) is encoded as a succession of segments
Identifiers (SIDs). Depending on the data plane, the format
of the SID and the encoding of the SRPs changes. In the case
of SR-MPLS, a SID is 20 bits label and the SRP is encoded
as label stack. Unfortunately, routers have a limitation on the
number of labels that get pushed onto a packet, this limitation
is a known as the Maximum Stack Depth (MSD).

In this demonstration, we present ELEANOR, a northbound
application for the OpenDayLight (ODL) Software Defined
Network (SDN) controller. Specifically, ELEANOR relies on
the SRP computation and management module to enable Traf-
fic Engineering (TE) capabilities in SR networks. ELEANOR
mitigates also the impact of the MSD limitation through its
label stack optimization module, by minimizing considerably
the size of label stack to express SRPs. For the purpose of this
demonstration, we have built a topology composed of several

routers from different vendors and Quagga-SR our open source
implementation of SR-MPLS based on the Quagga suite.

II. ARCHITECTURE

SR-MPLS couples MPLS’s robust data plane with a light
distributed control. SR control plane extends already deployed
protocols such as OSPF, ISIS, and BGP-LS. SP does not adopt
the same SDN vision as for data centers (i.e., removing the
network control plane). In fact, SPs don’t want to give up the
distributed control plane (i.e., maintain the network states in
the network). Consequently, in the SDN WAN architecture,
the controller synchronizes with network control plane for the
discovery of the network topology and available resources. The
SDN controller is used for path computation, traffic prediction
heuristics, and telemetry analysis.

Segment Routing by design is SDN ready as it removes per-
flow states from the network. In SR, paths and their Quality
of Service (QoS) requirement are only maintained by ingress
nodes. Therefore, the resources availability is not updated
and advertised by the Interior Gateway Protocol (IGP). This
requires using an SDN controller to deliver functionalities such
as traffic engineering.

ELEANOR

BGP-LSPCEP

REST

Path computation
Request/Response

Topology
Acquisition

Route Reflector

Fig. 1: Reference Architecture

978-1-5090-3672-1/17/$31.00 ©2017 IEEE 143

In this demonstration, we present the architecture depicted
in Fig. 1. The network topology is composed of SR enabled
routers, the OpenDaylight (ODL) SDN controller uses two of
its southbound interfaces to communicate with the network:
BGP-LS for topology acquisition and PCEP to push SRPs
configuration onto the routers. ELEANOR is an application
developed for SRPs computation, management and label stack
optimization, it is based on the open source project Pathman-
SR [3], and it communicates with ODL through its northbound
REST API.

A. ELEANOR Architecture

<REST-API>

Dijkstra

CSPF
(Delay)

CSPF
(bandwidth) SR-LEA

Path
protection

SR paths
database

SR SID
database

SR path

Label satck

Fig. 2: ELEANOR architecture

ELEANOR’s architecture as depicted in Fig. 2, has two
main modules: the path computation module and the label
stack optimization module:

1) Path Computation Module: The path computation mod-
ule is a suite of path computation algorithms. A client’s path
computation request includes the QoS requirements (e.g., de-
lay, bandwidth, path protection). Accordingly, the appropriate
Constraint Shortest Path First (CSPF) algorithm is called. The
resulting path is then passed to the label stack optimization
module, where the SR Label Encoding Algorithm (SR-LEA)
is used to compute the minimum label stack to express a SRP.

In SR-MPLS, a SRP is carried in the packet’s header as
a label stack; this minimizes considerably the number of
states core routers has to maintain. Therefore, no signaling
protocols such as Resource Reservation Protocol Traffic Engi-
neering (RSVP-TE) or Label Distribution Protocol (LDP) are
required. Unfortunately, losing the signaling process means
that the resources availability information is not updated hence
not advertised in the network. To mitigate this problem, in
ELEANOR, all the computed SRPs with their QoS require-
ments and priority are saved in the SRP database. This is
used by CSPFs algorithm to check if a link satisfies the

Input: Segment Routing Path (SRP)

Divide the SRP into succession of shortest paths (subpaths)

For each subpath :
1. IF size(subpath) >= 2 replace with a Node-SID
2. IF size(subpath) == 2 replace Adjacency-SID label

Output: Minimum Label Stack

Fig. 3: SR-LEA flowchart.

requested bandwidth. It is also used for global optimization,
where the administrator can schedule periodic SRPs placement
to maximize the rate of acceptance of future SRP demands.

2) Label Stack Optimization Module: In order to compute
the minimum label stack to express a (SRP), we have im-
plemented the Segment Routing Label Encoding Algorithm
(SR-LEA). As depicted in the Fig. 3, SR-LEA splices a SRP
into multiple subpaths, a subpath is a succession of nodes.
Subpaths composed of three or more nodes are the ones that
follow the IGP shortest path. Those composed of only two
nodes may or may not follow the IGP shortest path. Paths
that are three or more nodes long are encoded using the last
node’s Node-SID, and to ensure that the initial SR path is
respected, those that are two nodes long are encoded using
the Adj-SID attributed by the First node to reach the second
one.

For example, a client requests a path between Amiens and
Toulouse with 100 MB of bandwidth. First, the appropriate
CSPF is called to compute the path. Thus, the resulting best
path is {Amiens, Paris, Orleans, Lyon, Marseille, Toulouse}.
Second, the path is passed to SR-LEA algorithm, the SRP is
spliced into three parts: {Amiens, Paris, Orleans}, {Orleans,
Lyon} and {Lyon, Marseille, Toulouse}. Then as depicted
in Fig. 3, the first subpath is encoded with the Node-SID
of Orleans, the second subpath is encoded by the Adj-SID
attributed by Orleans to its adjacency to Lyon, and the third
subpath is encoded with the Node-SID of Toulouse. The
resulting label stack is a combination of Node-SIDs and Adj-
SIDs encoded in XML format, which get pushed into ODL
using the POST method.

B. Network Topology

The network topology designed for this demonstration is
composed of industrial routers and our SR-MPLS open source
implementation: Quagga-SR routers. As can be seen in Fig.
4. The routers are mapped over the France map, each router
is named based on the city it is located in.

We use OSPF protocol with SR extension enabled [4],
network routers use OSPF-SR to exchange SR information
such as: Node-SID, Adj-SID, and SRGB, etc. The border
of the network is composed of a mix of industry routers,
for the transit nodes we use Quagga-SR routers. The border

144

ParisLannion

Amiens

Strasbourg

Toulouse

Nantes

Bordeaux

Marseille

Lyon

Orleans

Rennes

Fig. 4: Demonstration Topology

routers have Path Computation Client (PCC) enabled; each
PCC establishes a PCEP [5] session with ODL’s southbound
interface PCEP, ODL commanded by ELEANOR uses this
session for the creation and deletion of the SRPs. Rennes
router is configured as Route Reflector (RR), this router
establishes a BGP-LS session with ODL, this session is used
by ODL for the acquisition of the link state topology, and this
topology gets replicated in the ELEANOR application.

C. Quagga-SR

Quagga routing software suite [6] is used as an open source
router, it is composed essentially of two components: an
implementation of several protocols such as OSPFv2, OSPFv3,
ISIS and BGP. 2). Zebra module ensures the communication
between the different routing daemons and the Linux kernel.

For the purpose of this demonstration, we have extended the
Quagga suite to deliver SR functionalities. This implementa-
tion requires a Linux Kernel 4.6.4. The detail of our implemen-
tation is depicted Fig. 5. Several modules and extensions had
been developed in order to add the support of SR. Notably, the
OSPF Daemon (OSPFD) is extended to support the encoding
and decoding of the SR TLVs. SR database maintains the SR
information locally configured or learned via the neighbors.
Several SR specific command has been added to vtysh shell:
to enable SR, SRGB configuration, Node-SID configuration,
etc.

To ensure the proper functioning of Quagga-SR router,
interoperability tests with routers from different vendors has
been successfully performed.

Fig. 5: Quagga-SR: Open source implementation of SR-MPLS

III. CONCLUSION

For this demo, we have presented an SDN architecture that
delivers Segment Routing traffic engineering. This architecture
reflects the service providers point of view of how SDN for
WAN should be. We detailed ELANOR, an ODL northbound
application for segment routing path computation, manage-
ment, and label stack encoding optimization. The network
topology for this demonstration is composed of routers from
different vendors and our open source router Quagga-SR.

REFERENCES

[1] C. Filsfils, S. Previdi, B. Decraene, S. Litkowski, and R. Shakir,
“Segment Routing Architecture,” Internet Engineering Task Force,
Internet-Draft draft-ietf-spring-segment-routing-09, Jul. 2016, work in
Progress. [Online]. Available: https://tools.ietf.org/html/draft-ietf-spring-
segment-routing-09

[2] S. Previdi, C. Filsfils, B. Field, I. Leung, J. Linkova, E. Aries, T. Kosugi,
E. Vyncke, and D. Lebrun, “IPv6 Segment Routing Header (SRH),”
Internet Engineering Task Force, Internet-Draft draft-ietf-6man-segment-
routing-header-01, Mar. 2016, work in Progress. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-6man-segment-routing-header-01

[3] Cisco, “Pathman-sr,” https://github.com/CiscoDevNet/pathman-sr, 2016.
[4] P. Psenak, S. Previdi, C. Filsfils, W. Henderickx, J. Tantsura, H. Gredler,

and R. Shakir, “OSPF Extensions for Segment Routing,” Internet
Engineering Task Force, Internet-Draft draft-ietf-ospf-segment-routing-
extensions-08, Apr. 2016, work in Progress. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-ospf-segment-routing-extensions-08

[5] S. Sivabalan, J. Medved, C. Filsfils, V. Lopez, J. Tantsura, W. Henderickx,
E. Crabbe, and J. Hardwick, “PCEP Extensions for Segment
Routing,” Internet Engineering Task Force, Internet-Draft draft-ietf-pce-
segment-routing-07, Mar. 2016, work in Progress. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-pce-segment-routing-07

[6] C. Networks, “quagga,” https://github.com/CumulusNetworks/quagga,
2016.

145

