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Abstract—Cloud Radio Access Network (C-RAN) is a
promising mobile network architecture that breaks down
the conventional base station into two main parts: the Base
Band Unit (BBU) and the Remote Radio Head (RRH). In
this context, deciding to which RRH users connect is known
as the user association problem. Moreover, RRHs may be
mapped to a single BBU, achieving statistical multiplexing
gain. Deciding what RRHs are grouped together is known
as the RRH clustering problem. As these two problems are
mutually dependent, we formulate in this paper the joint
user association and RRH clustering problem. Our objective
is to maximize the network throughput, while reducing the
network power consumption. Since our joint problem is NP-
hard, we propose to decompose it into two sub-problems: the
user association (UA) sub-problem and the RRH clustering
(RC) sub-problem. First, a low-complexity heuristic, based
on the received SINR, is used to solve the UA sub-problem.
Second, a low-complexity heuristic, based on the merge-and-
split rules, is introduced to solve the RC sub-problem. These
two sub-problems are sequentially and iteratively solved until
convergence is reached. We further evaluate the performance
of our proposed solution. Simulation results show that our
proposed heuristic solution for the RC sub-problem strikes
a good compromise between computational complexity and
performance, in comparison with the optimal exhaustive
search method. Furthermore, our proposed solution for
the RC sub-problem outperforms the no-clustering method,
where one BBU is exclusively dedicated to each RRH, and
the grand coalition method, where all RRHs are attached to
a single BBU.

I. INTRODUCTION

5G cellular networks are expected to meet the chal-

lenges of the explosive mobile data traffic growth. In

this context, Cloud Radio Access Network (C-RAN) was

introduced as a promising network architecture, to en-

hance network performance and reduce network power

consumption. The traditional base station is broken down

into a Base Band Unit (BBU) and a Remote Radio

Head (RRH). While the BBUs are pooled in a cloud

data center, the RRHs are distributed across multiple

sites. Moreover, the RRHs are connected to the BBUs

via high-performance optical fronthaul links. In practice,

to cope with the huge demand for capacity, RRHs are

densely deployed. Deciding to which RRH users connect

is known as the user association problem. Typically, user

association decisions depend on user radio conditions and

radio resource availabilities. Furthermore, RRHs may be

clustered, achieving statistical multiplexing gain. More

precisely, RRHs that serve few users are mapped to a

single BBU, sharing the same resource pool. This reduces

the network power consumption and the total interference

level. Deciding what RRHs are grouped together is known

as the RRH clustering problem.

The user association and the RRH clustering problems

are mutually dependent. On the one hand, RRHs that

are grouped together share the same radio resource pool.

Moreover, as only one user per BBU is served at a time,

they do not create interference on each other. Therefore,

the RRH clustering influences user radio conditions and

radio resource availabilities, and consequently user asso-

ciation decisions. On the other hand, the user association

influences RRH load conditions and consequently clus-

tering decisions. In fact, clustering decisions are ideally

load-aware, so as to minimize the number of active BBUs

while providing acceptable quality of service.

Unlike the state-of-the-art approaches, we address in

this paper the joint user association and RRH cluster-

ing problem. Our objective is to maximize the network

throughput, while minimizing the network power con-

sumption. As this problem is a mixed integer non-linear

programming problem, it can be solved through exhaustive

search. However, the computational complexity becomes

intractable as the network size increases. Therefore, we

decouple our joint problem into two sub-problems: the

user association (UA) sub-problem and the RRH cluster-

ing (RC) sub-problem. These sub-problems are iteratively

solved until convergence, or in other terms until no more

user-RRH associations and RRH clustering are to be

further modified.

II. RELATED WORK

As the user association and the RRH clustering prob-

lems have an important influence on the network perfor-

mance, more precisely throughput, and the network power

consumption, they need to be carefully addressed. Sev-

eral works have tackled the two problems independently.

The works in [1], [2] and [3] focused on the clustering

problem. In [1], authors proposed a dynamic clustering

algorithm, where RRHs that induce the strongest received

signal powers are grouped together. The objective is to

maximize the network spectral efficiency. In [2], the

RRH clustering is formulated as a modified bin packing

problem. The aim is to minimize the number of active

BBUs, and consequently the network power consumption,

without compromising user quality of service. In [3], RRH

clustering was portrayed as a coalition formation game,

where the objective is to optimize the network throughput,



power consumption, and handover frequency. The works

in [4], [5] tackled the user association problem. A user

association optimization problem was formulated in [4]

to minimize the network latency. To solve the latter, a

three-phase search algorithm was introduced. In [5], the

authors tackled the same problem, where the objective

is to minimize the power consumption under downlink

and uplink QoS constraints. Furthermore, few works con-

sidered the joint problem of user association and RRH

clustering. The authors in [6] present one of the works

addressing the dependency between the two problems.

They propose a dynamic two-stage design. First stage,

Branch & Cut algorithm is used to find the proper user-

RRH association. Second stage, BBU-RRH clustering is

modeled as a Multiple Knapsack Problem, and is based

on the output of the first stage. However, inter-cluster

interferences are ignored, which have a serious impact on

network performances as demonstrated in [7]. To reduce

the energy consumption, the authors in [8] propose an

energy-saving algorithm with joint user association and

clustering strategies. First, to solve the user association

sub-problem, an optimal association policy is applied,

based on load balancing and energy efficiency. Second,

the clustering sub-problem is modeled as an integer linear

programming, based on the location and load of the base

stations. Yet, this study overlooks user quality of service

and does not iteratively solve the two sub-problems until

reaching a stable and jointly efficient solution.
In this paper, the contributions of our work can be

summarized as follows:

• We formulated the joint user association and RRH

clustering problem, taking into account inter-cluster

interferences. Our objective is to maximize the net-

work throughput and to minimize the network power

consumption.

• To deal with the high computational complexity of

the joint problem, we decouple it into two sub-

problems: the user association (UA) sub-problem and

the RRH clustering (RC) sub-problem. Further, to

find a jointly efficient solution, these sub-problems

are sequentially and iteratively solved until conver-

gence, or in other terms until no more user-RRH

associations and RRH clustering need to be further

modified.

• We propose a heuristic, based on the merge-and-split

rules, to solve the RC sub-problem. This solution can

adapt to various traffic types (e.g., elastic and inelas-

tic traffic) and provides very close performances to

that of the optimal clustering, with significantly lower

computational complexity.

The rest of this paper is organized as follows. Section

III describes the system model. In Section IV, we provide

a framework for the joint optimization of user association

and RRH clustering. Our iterative approach to solve the

joint problem is introduced in Section V. Simulation

results are presented in Section VI. Finally, concluding

remarks are provided in Section VII.

III. SYSTEM MODEL

Consider R RRHs denoted by the set

R = {r1, r2, · · · , rR} and B BBUs denoted by the

Server

BBU

RRH

UserOptimal fronthaul links

RRH clustering

ServerServerServer Server Server

BBU pool

Fig. 1. The C-RAN architecture.

set B = {b1, b2, · · · , bB}. While the RRHs are distributed

across multiple sites, the BBUs are pooled in a cloud

data center, as illustrated in Fig. 1. We further denote

by U = {u1, u2, · · · , uU} the set of active users. Xur,

Yrb, Hr, and Kb are binary variables that define the user

association and the RRH clustering respectively. Xur

is equal to 1 if user u is attached to RRH r, and zero

otherwise, and Yrb is equal to 1 if RRH r is attached to

BBU b, and zero otherwise. Furthermore, Hr and Kb are

two binary variables, which are equal to one if RRH r
and BBU b are turned on respectively and zero otherwise.

We assume that each user is served by at most one RRH,

and each RRH can be associated with at most one BBU.

Moreover, we denote by du the throughput demand of

user u.

The SINR of user u when attached to RRH r, that is

mapped to BBU b, is given as:

Γurb =
PrGur

N0 +
∑

r′ �=r(1− yr′b)Pr′Gur′
, (1)

where Pr is the transmit power of RRH r, Gur is the

channel gain between user u and RRH r, and N0 is the

thermal noise power. Note that
∑

r′ �=r(1 − yr′b)Pr′Gur′

represents the inter-cluster interferences caused by the

RRHs that are not associated with BBU b, which means

there does not exist intra-cluster interferences between

RRHs associated to the same BBU.

The average spectral efficiency in BBU b, denoted by

η̂b, can be written as follows:

η̂b =
1

ub

∑
r∈R

∑
u∈U

XurYrb log(1 + Γurb), (2)

where ub represents the number of users sharing the

radio resources of BBU b and can be expressed as:

ub =
∑
r∈R

∑
u∈U

XurYrb. (3)

Throughput demands of RRH r, denoted by dr, is the

sum of throughput demands of the users that are served

by RRH r and can be written as follows:

dr =
∑
u∈U

Xurdu. (4)



A. Throughput Model

We denote by Trb the average throughput perceived

by RRH r, that is mapped to BBU b. We consider

that radio resources in BBU b are shared amongst its

associated RRHs proportionally to their throughput de-

mands. However, the allocation of each RRH is limited

to its throughput demand. Thus, the average throughput

achieved in RRH r can be expressed as follows:

Trb = [
Tm
b

max (Tm
b ,

∑
r∈R Yrbdr)

] · dr, (5)

where Tm
b is the maximum throughput achieved by BBU

b and is defined as follows:

Tm
b = Wb · η̂b, (6)

where Wb is the channel bandwidth in BBU b.
We denote by Tb the average throughput achieved in

BBU b. It is the sum of throughputs achieved by the

RRHs that are attached to BBU b and can be expressed

as follows:

Tb =
∑
i∈R

YrbTrb. (7)

Moreover, we denote by Ttotal the total throughput

achieved in the network. It is defined as the sum of

throughputs achieved by active BBUs as presented in

Equation (7). Thus, Ttotal can be written as:

Ttotal =
∑
b∈B

Tb. (8)

B. C-RAN Power Consumption Model

According to [9], the power consumed in the C-RAN

architecture is modeled as the sum of two terms, the power

consumed by all BBUs at the baseband processing pool,

and the power consumed by all RRHs. Thus, the total

network power consumption can be expressed as:

Ptotal =
∑
b∈B

Pb +
∑
r∈R

Pr, (9)

where Pb and Pr respectively denote the power consumed

by BBU b and that at RRH r.

As for the power consumption at BBU b, Pb is a linear

function of the throughput achieved in BBU b. It can be

expressed as:

Pb =

{
λ+ μ · Tb, if Kb = 1,

0, otherwise,
(10)

where λ represents the power consumption of BBU b in

active mode, and μ is the variation coefficient of Pb as a

function of Tb.

Similarly, the power consumption at RRH r, can be

expressed as:

Pr =

{
P 0 + δPr, if Hr = 1,

P s, otherwise,
(11)

where δ is the power amplifier efficiency, Pr is the trans-

mit power of RRH r, and P 0 and P s are the additional

power consumed by RRH r independently of Pr in active

mode and sleep mode respectively.

IV. JOINT USER ASSOCIATION AND RRH

CLUSTERING PROBLEM

The user association and the RRH clustering are two

mutually dependent problems. The user association influ-

ences RRH load conditions and consequently clustering

decisions. In fact, clustering decisions need to be load-

aware, so as to minimize the number of active BBUs while

providing acceptable quality of service. Furthermore, re-

ducing the number of active BBUs decreases the total

interference level and the network power consumption.

Nevertheless, crowded BBUs (i.e., to which overloaded

RRHs are associated) lead to resource shortage and have

a crucial impact on user throughputs and consequently on

user associations.

A. Network Utility Function

We define the network utility function U as a linear

combination of the total network throughput Ttotal and

the total network power Ptotal:

U = αα′Ttotal − ββ′Ptotal, (12)

where α′ and β′ are two normalizing constants, and α and

β are the weighting factors that tune the tradeoff between

the two components of U . Note that α and β are between

0 and 1, and α + β = 1.

B. Optimization Problem Formulation

Our optimization problem (P) consists in finding the

optimal user association and RRH clustering decisions,

that maximize the network utility U . Therefore, (P) can

be written as follows:

maximize
X,Y

U(X, Y) (13)

subject to
∑
r∈R

Xur ≤ 1, ∀u ∈ U (14)

∑
b∈B

Yrb ≤ 1, ∀r ∈ R (15)

Xur ≤ Hr, ∀(u, r) ∈ U ×R (16)

Yrb ≤ Kb, ∀(r, b) ∈ R× B (17)

Xur, Yrb, H
r,Kb ∈ {0, 1} , ∀(u, r, b)

(18)

Constraints (14) ensure that a user must be connected

to at most one RRH. Constraints (15) ensure that each

RRH can at most be mapped to one BBU. Constraints

(16) indicate that a given RRH is turned on only when it

serves at least one user. Constraints (17) state that a given

BBU is activated only if at least one RRH is associated

to it. Finally, constraints (18) indicate that all the decision

variables, namely Xur, Yrb, Hr, and Kb are binary.

C. Complexity Analysis

Our problem (P) is a mixed integer nonlinear pro-

gramming problem, that is NP-hard. The optimal solution

can be obtained through exhaustive search. However, this

requires exploring all possible user-RRH associations in

all possible RRH-BBU configurations. In fact, the number

of possible user-RRH associations is RU . Besides, the



number of possible RRH-BBU configurations is given by

the R-th Bell number, denoted by BR, and grows rapidly

with R. Consequently, the computational complexity for

obtaining the optimal solution is in O(BR.R
U ). The ex-

haustive search is thus extremely computational intensive

and becomes prohibitive even for medium-sized networks.

To overcome the complexity of the joint problem, we

propose in section V to decouple it into two sub-problems,

namely the user association (UA) sub-problem and the

RRH clustering (RC) sub-problem, and to sequentially

and iteratively solve them until convergence is achieved.

Such an iterative approach allows to reach jointly efficient

solutions.

V. HEURISTIC SOLUTION FOR THE JOINT PROBLEM

To overcome the complexity of the joint problem, we

present in this section an iterative approach that allows

reaching stable and jointly efficient solutions. The joint

problem is decoupled into two sub-problems: the user

association (UA) sub-problem and the RRH clustering

(RC) sub-problem. These two sub-problems are sequen-

tially and iteratively solved, as presented in Fig. 2, until

convergence is reached. More precisely, assuming an

initial RRH clustering, the UA sub-problem is first solved.

Then, considering the outputs of the UA sub-problem,

the RC sub-problem is solved. Further, depending on the

clusters that have been recently formed, user associations

may be reconsidered. This is repeated until convergence,

or in other terms until no more user-RRH associations

and RRH clustering need to be further modified. Thus, the

mutual dependence between the UA sub-problem and the

RC sub-problem is taken into account, leading to jointly

efficient solutions.

Initialize RRH clusters, user and 
RRH positions

Solve the UA 
sub-problem based on the 

received SINR

Solve the RC sub-problem based 
on the merge-and-split rules

Change in the 
UA?

No

Yes

Xur

Yrb

Obtain UA and RC solutions

Re-associate users according to 
the new RRH clustering

No

Fig. 2. Iterative approach for the joint user association and RRH
clustering problem.

A. UA Sub-problem

The optimal user association sub-problem can be solved

through exhaustive search. Although the computational

complexity is reduced to be in O(RU ), the optimal

solution remains practically intractable particularly for

large U . For that, we resort in this article to a low-

complexity heuristic algorithm, based on the received

SINR, to determine user-RRH associations. As a matter

of fact, user u is associated with RRH r∗ whose radio

signals are the best received: r∗ = argmaxr Γurb. This

heuristic maximizes users radio conditions and enhances

network spectral efficiency.

B. RC Sub-Problem

The optimal RRH clustering sub-problem can also be

solved through exhaustive search. This requires exploring

all possible partitions of R and selecting the one that max-

imizes the network utility. Although the computational

complexity is reduced to be in O(BR), the optimal solu-

tion remains intractable for large R. Therefore, we propose

in this article a low-complexity heuristic algorithm, based

on the merge-and-split rules [10], to solve the RC sub-

problem. More precisely, based on the merge-and-split

rules, the RRHs collaborate and organize themselves into

disjoint independent clusters, in a way to maximize the

network utility:

• Clusters {c1, c2, · · · , cl} are merged into one, if the

resulting cluster provides a higher network utility:

U(
⋃

l
i=1ci) >

l∑
i=1

U(ci) (19)

The merging process ends when no more preferred

clusters can be further formed.

• A cluster
⋃

l
i=1ci is splitted into smaller ones

{c1, . . . , cl}, if this leads to a higher network utility:

l∑
i=1

U(ci) > U(
⋃

l
i=1ci) (20)

The splitting process ends when no more clusters are

to be preferably broken into.

The merging and splitting processes are repeated until

convergence, or in other terms until no more merge-

and-split can be further done. According to [10], our

heuristic leads to a Dhp-stable partition, since it consists

of successive merge-and-split operations.

1) Complexity Analysis: The computational complexity

is determined by the number of attempts for the merge-

and-split operations. In the worst case scenario, the first

RRH initiates (R − 1) merging attempts, the second

initiates (R − 2) iterations, and so on. Consequently, the

total number of merging attempts will be (R(R − 1)/2).
Thus, the complexity of the merging process is in O(R2).
However, in practice, the merging process requires a

significantly less number of attempts: once a cluster is

formed, it does not always require to go through all the

merging attempts. Furthermore, in the worst case scenario,

the complexity of the splitting process is in O(BR). This

involves finding all the possible partitions of R. Yet, in

practice, the splitting process is restricted to the clusters



that have already been formed and is not performed over

all the RRHs in R. As the network utility takes into

account the network total throughput, cluster sizes are

usually kept small. As a result, the complexity of the

splitting process is practically reasonable.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of our

heuristic iterative solution. We also compare our heuristic

solution for the RC sub-problem with the optimal solu-

tion obtained through exhaustive search, the no-clustering

solution, where one BBU is exclusively dedicated to

each RRH, and the grand coalition, where all RRHs are

associated with a single BBU.

We use Matlab for simulations, and we consider a 7-cell

network: a central RRH is surrounded by a ring of 6

immediately adjacent RRHs. The Cost-231 Hata model

is used to compute the channel gains. We consider 500

simulation snapshots. Each is repeated until convergence

is reached. All performance metrics are averaged and

shown with 95% confidence intervals. The simulation

parameters are presented in Table I.

TABLE I
SIMULATION PARAMETERS

Parameter Value
α 0.5
β 0.5

Pr, ∀r 10 W

P 0 6.8 W
P s 4.3 W
δ 4
λ 40 W
μ 0.6 W/(Mb/s)

Wb, ∀b 20 MHz
N0 −174 dBm/Hz
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Fig. 3. Number of active BBUs as a function of the number of users

Fig. 3 illustrates the number of active BBUs as a func-

tion of the number of users. Regardless of the number of

users in the network, the number of activated BBUs given

by the grand coalition scheme is unchanged (i.e., equal to

1), since all RRHs are mapped to one BBU. However, in

the no-clustering scheme, this number increases with the

number of active RRHs, or equivalently the number of

users. As a matter of fact, a BBU is exclusively dedicated

to each active RRH. Moreover, our heuristic and optimal

solutions effectively reduce the number of active BBUs

mainly at low load conditions (i.e., number of users below

60). This significantly decreases both the inter-cluster in-

terferences and the power consumption (cf. Fig. 4 and 6)

in comparison with the no-clustering solution.
Furthermore, Fig. 4 shows the user interference as a

function of the number of users in the network. Inter-RRH

interferences can be avoided by activating one BBU as in

the grand coalition method. However, limiting the number

of active BBUs provides the lowest user throughputs as

illustrated in Fig. 5. Besides, the no-clustering solution

leads to the highest interference level, as it actives the

highest number of BBUs (cf. Fig. 3). Moreover, our

heuristic and optimal solutions reduce the inter-BBU in-

terference through reducing the number of active BBUs.

Note that, for a large number of users, the gap between

the no-clustering, our heuristic and the optimal solutions

decreases as all of them activate almost the same number

of BBUs.
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Fig. 4. User interference as a function of the number of users

Fig. 5 shows the user throughput as a function of

the number of users. The throughput achieved by a user

depends on the number of available resources as well as

the endured interference. Since the grand coalition acti-

vates only one BBU (i.e., provides very limited resources

without interference as shown in Fig. 4), it achieves

the lowest user throughput. However, the no-clustering

method ensures the highest user throughputs owing to

the availability of radio resources, but at the cost of

high inflicted interference (i.e., it maximizes the number

of active BBUs). Moreover, our heuristic and optimal

solutions achieve very close user throughputs to that of

the no-clustering scheme while providing less interference

and power consumption as illustrated in Fig. 4 and 6.
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Fig. 5. User throughput as a function of the number of users

Moreover, the power consumption depends on the num-

ber of active BBUs and RRHs and their realized through-



puts (according to Eq. (10)). As shown in Fig. 6, the

grand coalition solution minimizes the power consumption

by activating only one BBU. As for the no-clustering

solution, it leads to the highest power consumption in

comparison with our heuristic, the optimal and the grand

coalition solutions. Moreover, by reducing the number

of active BBUs, our heuristic and the optimal solution

consume less power than the no-clustering method. Yet,

they provide close user throughputs to the no-clustering

solution (cf. Fig. 5).
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As illustrated in Fig. 7, the network utility achieved

by our heuristic and the optimal solutions outperform the

two state-of-the-art methods regardless of the number of

users in the network. In fact, they realize a good trade-off

between user throughput and overall power consumption

to maximize the network utility under all load conditions.
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Fig. 7. Network utility as a function of the number of users
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We show in Fig. 8 the number of iterations, or equiv-

alently the number of successive merge-and-split oper-

ations, our heuristic requires to reach a Dhp − stable
partition. While the optimal exhaustive search solution

needs 877 iterations to find the optimal partition, our

proposed heuristic converges rapidly within few iterations

(a maximum of 8 iterations). Yet, as discussed earlier, our

heuristic provides very close performances to that of the

optimal one particularly in terms of throughput, power

consumption and utility function.

A. Performance evaluation in large networks

In this section, we highlight the importance of cluster

formation on interference mitigation and its impact on

network performance. In large networks, the interfer-

ence becomes significantly large. Thus, the role of RRH

clustering becomes more pronounced as an interference

mitigation technique. In order to examine the impact of

interference, we consider a network composed from 19

RRHs as presented in Fig. 9. Since finding the optimal

clusters by exhaustive search is impractical in such net-

work, we use our proposed heuristic solution to solve the

RC sub-problem.
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Fig. 9. Network with 19 RRHs

We start by the variation of the number of active BBUs

as a function of the number of users in the network.

Fig. 10 shows that our heuristic solution avoids turning

on all BBUs for high load conditions (i.e., 120 users)

contrarily to the case shown in Fig. 3 where almost

all BBUs are activated by the same algorithm (i.e., 13

activated BBUs from 14). In fact, activating more BBUs

leads to increased interference (among RRHs belonging

to different BBUs), which has a seriously negative impact

on large scale network performance. Thus, by reducing

the number of active BBUs, the heuristic solution allows

a reduction of the interference level in comparison with

no-clustering scheme (cf. Fig. 11). Moreover, with less

radio resources, our algorithm provides very close user

throughput to that of the no-clustering method as well

as less power consumption, as illustrated in Fig. 12 and

Fig. 13. Consequently, by reducing both the user interfer-

ence and the power consumption while preserving the user

throughput, our heuristic solution introduces a significant

performance gain for a large network size. Therefore,

the heuristic outperforms the no-clustering method with

a relatively large gap (cf. Fig. 14) comparing to the case

seen in Fig. 7 where the gap between the two methods is

too tight especially at high load condition.

VII. CONCLUSION

In this paper, we consider the joint user association

and RRH clustering problem in cloud radio access net-

works. This problem is formulated as a mixed integer



optimization problem with the objective of maximizing

the overall network throughput and reducing the net-

work power consumption. Since such problem is NP-

hard, we propose to decompose it into two sub-problems:

the user association (UA) and the RRH clustering (RC)

sub-problems. These two sub-problems are sequentially

and iteratively solved until convergence is reached. Such

an iterative approach allows reaching stable and jointly

efficient solutions. Moreover, we present a low-complexity

heuristic, based on the merge-and-split rules, to solve

the RC sub-problem. Simulation results show that our

proposed heuristic achieves the highest network utility

in comparison with the two state-of-the-art methods:

the grand coalition and the no-clustering. In addition,

it achieves very close performances to the optimal ex-

haustive search method. Further, our heuristic solution

provides a significant performance gain in large networks

in comparison with the two state-of-the-art methods.
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Fig. 10. Number of active BBUs as a function of the number of users
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Fig. 11. User interference as a function of the number of users
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Fig. 12. User throughput as a function of the number of users
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Fig. 13. Power consumption as a function of the number of users
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Fig. 14. Network utility as a function of the number of users
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