
Label Encoding Algorithm for MPLS Segment
Routing

Rabah Guedrez∗ Olivier Dugeon∗ Samer Lahoud† Géraldine Texier‡
∗Orange Labs, Lannion, France,

rabah.guedrez@orange.com, olivier.dugeon@orange.com
†*IRISA/Université de Rennes 1/Adopnet Team, Rennes, France, samer.lahoud@irisa.fr

‡IRISA/Télécom Bretagne/Adopnet Team, Rennes, France, geraldine.texier@telecom-bretagne.eu

Abstract—Segment Routing is a new architecture that leverages
the source routing mechanism to enhance packet forwarding in
networks. It is designed to operate over either an MPLS or
an IPv6 control plane. SR-MPLS, its instantiation over MPLS,
encodes a path as a stack of labels inserted in the packet header
by the ingress node. This overhead may violate the Maximum
SID Depth (MSD), the equipment hardware limitation which
indicates the maximum number of labels an ingress node can
push onto the packet header. Currently, the MSD varies from
3 to 5 depending on the equipment manufacturer. Therefore,
the MSD value considerably limits the number of paths that
can be implemented with SR-MPLS. The consequence may be
an inefficient network resource utilization and may also lead to
congestion. We propose and analyze SR-LEA, an algorithm for an
efficient path label encoding that takes advantage of the existing
IGP shortest paths in the network. The output of SR-LEA is the
minimum label stack to express SR-MPLS paths according to
the MSD constraint. Therefore, SR-LEA substantially slackens
the impact of MSD and restores the path diversity that MSD
forbids in the network.

Index Terms—Segment Routing, MPLS, SR-MPLS, label stack,
traffic engineering.

I. INTRODUCTION

Segment Routing (SR) is a new architecture standardized by
IETF SPRING working group [1]. It can be instantiated over
two existing data plane MPLS (SR-MPLS) [1] [2] and IPv6
(SR-IPv6) [3]. In SR packet are forwarded using the source
routing mechanism: the path the packet has to go through
is encoded in its header. SR-MPLS is the central focus of
the IETF working groups, mainly because of the important
implications of service providers (SPs).

The major advantage of SR is that it eliminates the per-flow
states from the SP’s core routers. In fact, a path is directly
usable by any router; no prior setup/signalization is required,
unlike MPLS-TE where a tunnel has to be signaled and
maintained using protocols such as the Resource Reservation
Protocol Traffic Engineering (RSVP-TE). In SR, only the
ingress node has to maintain per-flow states. Also, SR archi-
tecture adds extensions to already deployed IGP protocols:
Open Shortest Path First (OSPF) [4], Intermediate System to
Intermediate System (IS-IS) [5] and Border Gateway Protocol
Link State [6] to exchange SR information. Therefore, SR-
MPLS revokes the need for a label distribution protocol such
as LDP or RSVP-TE.

A SR Path (SRP) is encoded as list of segments identifiers
(SIDs), each SID associated with a data plane forwarding
instruction e.g., forward the packet down the IGP shortest path
or forward to a specific exit interface.

In the SR instantiation over the MPLS data plane (SR-
MPLS), a SID is represented by a 20-bit label. The SID is
processed using the three standard MPLS operations POP,
PUSH, and SWAP. A SRP is encoded as a stack of labels
that the ingress router pushes onto the packet header. In fact,
pushing more than one was supported since the early version
of MPLS standards [7], the label stack has been used for
multiple use cases: hierarchical tunnels, Layer 2 Virtual Private
Network (L2VPN), and Layer 3 VPN. However, those use
cases require a small number of labels, for example, a scenario
of L2VPN or L3VPN requires only simultaneously two labels:
the tunnel’s label and VPN’s label. To take full advantage
of SR’s potential, a router has to be able to push a larger
number of labels. Unfortunately, current hardware suffers from
physical limitation of the number of labels that can be used
simultaneously [8].

In fact, in order to achieve wire-speed packet processing,
hardware vendors use Application-specific integrated circuit
(ASIC)s. They are designed to perform specific tasks very effi-
ciently compared to general purpose processors. Consequently,
they are limited in the size and the type of the operations they
can perform. For example, the PUSH operation is implemented
using dedicated ASICs that limit the number of labels they can
push onto the packet header, this limitation in SR is known
as the Maximum SID Depth (MSD). Therefore, an efficient
label encoding able to reduce the labels stack size is essential
to alleviate the MSD impact. In addition, reducing the label
stack saves space and enables to carry other types of labels
such as the entropy labels [9].

In this paper, we propose two label encoding algorithms
for SR-MPLS paths. Both algorithms compute the minimum
number of labels to express a SRP. We evaluate their
performances over several real-world network topologies.
The results are presented in term of the average number of
labels to express a set network paths. In addition, we study
their efficiency in alleviating the impact of the MSD limitation.

II. RELATED WORKS

In [10], Giorgetti et al. propose two SRP encoding al-
gorithms that produce for the same SRP two label stacks
of the equal size. Both algorithms use only Node-SIDs to
encode a SRP. Unfortunately, in some cases, the resulting
label stack may not correspond to the initial path. In fact,
the proposed algorithms work well in a network where the
shortest path between two directly connected nodes is a direct
link, However, in real networks, a network administrator may
choose to attribute higher costs to particular links that can lead
up to the direct link not being the shortest path between two
nodes.

In [11], a new network graph is constructed based on the
initial network by adding a virtual link is added for every pair
of nodes in addition to the existing physical links. The virtual
links represent the Equal-Cost Multiple Paths (ECMP)s be-
tween two nodes. The path computation is performed over the
new graph. The proposed label encoding algorithm replaces a
virtual link by the tail’s end node Node-SID whilst the physical
link is replaced by an Adj-SID. This proposition suffers mainly
from scalability issues. In fact, the new graph is much bigger
that the initial network graph, with a number of links equal to
the number of combinations of network nodes. For example, a
network composed of 1000 nodes results in a new graph with
approximately half million links. Several problems arise with
such huge graphs, like for example slower response time due
to the memory requirements, a strong computation complexity,
and a considerable amount of processing required to update
the network traffic engineering database.

III. SEGMENT ROUTING PATH

In this section, we explain the main concepts of the SR
architecture and detail how different types of SID are used to
forward packets through the network.

In SR-MPLS, a node advertises a Segment Routing Global
Bloc (SRGB). The SRGB is the range of labels allocated for
SR (e.g., [1000, 2000]). A SID can be global or local to the
node that advertises it. A global SID takes its value within
the SRGB (e.g., 1100), all the SR nodes install a forwarding
instruction associated with each global SIDs. A local SID takes
its value outside the SRGB (e.g., 3000); it is advertised in
the SR domain but only the node advertising it possesses an
associated forwarding instruction.

A SRP can be encoded using any combination of SIDs (i.e.,
local or global). As long as the nodes that the packet traverses
own a forwarding instruction to reach the egress node. In this
work, we focus on the use of two SIDs types: Node-SID and
Adj-SID, we do not consider other SID types such as service
SID, BGP peering SIDs, etc.

The two proposed SRP encoding algorithms produce a label
stack composed of two SID types: Node-SID and Adj-SID.
Each SID has a pre-installed forwarding plane instruction
associated with it as follows:

• Node-SID: it is a label associated with the SR node
i.e., attached to the loopback address. When a SR node

receives a packet with a Node-SID as a top label, it
forwards it on the IGP shortest path to reach the node
that owns that Node-SID, the node owning the Node-
SID pops the label before inspecting the next label in the
stack.

• Adjacency SID (Adj-SID): it is the label attached to an
IGP adjacency i.e., the interface to reach the neighbor
router. It is used to enforce packet forwarding through
a specific exit interface. By default, an Adj-SID is ad-
vertised as a local segment, it can also be advertised as
global if desired.

IV. SEGMENT ROUTING PATH ENCODING

The SRP length varies depending on the network diam-
eter, QoS requirements, and network resources availability.
Accordingly, the label stack to express a SRP can be very
big, resulting in a label stack size that may exceed the ingress
MSD. This causes the incapacity of using such a path, and
other side effects such as preventing the use of other label
types. Therefore, an efficient encoding algorithm is required
to minimize the size of the label stack.

A source routed path may be strict or loose. A path is
strict if all the links and nodes that the packet has to go
through are listed in the packet header, whereas a path is
loose if only a subset of the links and nodes that packet has
to go through are listed in its header. SRPs can be expressed
exclusively with Node-SIDs, local Adj-SIDs, Global Adj-SIDs
or a combination of those SID types. In this paper, a SRP is
strict if it is encoded using only Adj-SIDs. Otherwise, it is
considered as loose:

• A SRP encoded exclusively with Node-SID or a com-
bination of Node-SIDs and Adj-SIDs is a loose path.
Two successive Node-SIDs in the label stack can be
separated by one or more network nodes. The label
stack expresses the initial path in the current state of
the network. However, if the IGP metric between two
SR nodes changes, the label stack will not represent the
initial path anymore.

• A SRP encoded with local Adj-SID is a strict path,
because the Adj-SIDs are local to the nodes advertising
them have the forwarding entries associated with them.
Therefore, the packet has to go through only the nodes
that own the Adj-SIDs.

• A SRP encoded with global Adj-SIDs can be a strict or
a loose path: strict if all the links that the packet has to
go through are listed in the label stack, loose only if a
subset of the links is listed.

We propose two SRP path encoding algorithms. The com-
puted label stack is a combination of Node-SIDs and Adj-
SIDs. Recall that in current SR deployments, Adj-SIDs are
advertised as local segments. In that case, we use the SR
paths Label Encoding Algorithm (SR-LEA) to compute the
minimum label stack. However, as stated in the standards, Adj-
SIDs can also be advertised as global segments. Therefore,
the minimum label stack is computed using the SR-LEA-A
Algorithm.

Let us consider the topology detailed in Fig. 1. All the nodes
allocate the same SRGB: [1000, 2000]. The computed path to
satisfy the Quality of Service (QoS) requirements for the traffic
sent by CE1 to CE2 is P: PE1→ P2→ P3→ P7→ P6→
PE5. P has to be encoded as a stack of labels then pushed
by PE1 onto flow’s packets. In what follows we detail the
different encoding algorithms:

A. Strict Encoding

A strict encoding of the SRP is the worst case scenario, as
it generates the maximum label stack to encode a SRP. Two
approaches may be applied:

• Using exclusively Node-SIDs to encode a SRP. Replace
each node in the SRP by its Node-SID. This approach
suffers from the same problem as in [10]. In fact, the
resulting label stack expresses the requested SRP only if
the shortest path between all the neighbors in the path
is via the direct link. For example, a strict encoding of
path P results in the following label stack: {Node-SID
PE1, Node-SID P2, Node-SID P3, Node-SID P7, Node-
SID P6, Node-SID PE5}. However, this label stack does
not express path P. The packets at P3 will not be sent
to P7 over the direct link because it is not the shortest
path.

• Using exclusively Adj-SIDs to encode a SRP. At each
node the exit interface is replaced with the associated
Adj-SID, this produces a label stack that corresponds to
requested path. As shown in Fig. 2, a strict encoding of
path P results in the following label stack: {Adj-SID PE1-
P2, Adj-SID P2-P3, Adj-SID P3-P7, Adj-SID P7-P6, Adj-
SID P6-PE5} = [5012, 5023, 5037, 5076, 5065]. Each
node pops the Adj-SID that it owns before forwarding
the packet through the chosen interface.

Strict encoding can be essential to accomplish certain tasks
such as Operations, Administration, and Maintenance (OAM)
[12]. For example, to monitor a specific path when ECMPs
exist. The reference topology Fig. 1 is composed of 8 nodes.
However, a SP network can be composed of hundreds or
even thousands of nodes. Consequently, using strict encoding
especially for long paths is not always possible as it violates
the MSD constraint, also it adds a considerable overhead to
packets.

B. SR-LEA Algorithm

We propose the SR-LEA algorithm, for computing the
minimum label stack to encode a SRP. It is used if the Adj-SID
are advertised as local segments. The algorithm takes the initial
path expressed as a list of IP addresses. The initial path can be
imposed manually or computed by a centralized entity such
as a Software Defined Network (SDN) controller [13] [14]
or by a Path Computation Element (PCE) [15] [16]. SR-LEA
makes use of existing IGP shortest paths, which are installed
as forwarding instructions by the SR-MPLS control plane. The
resulting label stack is a combination of Node-SIDs and local
Adj-SIDs. It represents exactly the initially computed path in
the current state of the network.

Algorithm 1 Efficient Label Encoding algorithm
INPUT: The SRP expressed as a list of IP addresses
OUTPUT: labelStack the SRP minimum label stack.
Initialization:
G: Graph of the network topology
A = { }: Holds the list of the SRP subpaths.
B = []: Used to construct a subpath, when no IP addresses
can be added it is moved to A.
SPF = Dijkstra(SRP [1], SRP [end]): The shortest path
between the source and destination of the SRP.
labelStack = []

STEP 1: Computation of the SRP subpaths.
1: i = 1: Points to the current node of the SRP.
2: k = length(SRP) : Points to the last node of the

candidate subpath.
3: while i <= length(SRP) do
4: push(B, SRP [i])
5: if i == length(SRP) then
6: push(A, B)
7: else if B * SPF then
8: if length(B) == 2 then
9: if k > i then

10: k −−
11: B = B[1]
12: SPF = Dijkstra(G, B[1], SRP [k])
13: continue
14: else
15: push(A, B)
16: B = B[end]
17: SPF = Djikstra(G, B[1], SRP [k])
18: end if
19: else
20: push(A, B[1 : end− 1])
21: SPF = Djikstra(G, B[end− 1], SRP [k])
22: B = []
23: i−−
24: continue
25: end if
26: end if
27: i++
28: k = length(SRP)
29: end while

STEP 2: The construction of the label stack.
30: for i← 1 To Size(A) do
31: if length(A[i]) > 2 then
32: push(labelStack, NodeSID(A[i][end]))
33: else
34: push(labelStack, AdjSID(A[i]))
35: end if
36: end for

P2

P8 P7

P3

CE1 CE2

P6

P410

10

10

10

10

10

10

10

10
10

100PE1 PE5

Fig. 1: Reference network topology, all the links costs is
10 except the link P3-P7 is attributed cost 100.

P2

P8 P7

P3

CE1 CE2
PKT

Match FEC x

PUSH([5012,5023,5037,5076,5065)

5
0

37

POP(5037)

PKT
5065

PKT

P6

P4

PKT

5076
5037
5023
5012

PKT

5065
5076
5037
5023

PKT

5065
5076
5037

PKT

5065
5076

PKT

5065

5023

5076

POP(5023)

POP(5012)

POP(5076) POP(5065)

PE1 PE5

Fig. 2: The SRP to connect CE1 and CE2 is expressed
as a label stack using the strict algorithm.

P2

P8 P7

P3

CE1 CE2
PKT

Match FEC x

PUSH([1003,13073,1005])

5
0

3
7

PKT

1003

1005
5037

POP(1003)

POP(5037)

PKT

1003

1005
5037

PKT

1003

1005
5037

PKT

1005 POP(1005)P6

P4

PKT
1005

PKT

1005

PKTPE1 PE5

Fig. 3: The SRP to connect CE1 and CE2 is expressed
as a label stack computed using the SR-LEA algorithm.

P2

P8 P7

P3

CE1 CE2
PKT

Match FEC x

PUSH([1037,1005])

1
0

37

PKT
1005
1037 POP(1037)

PKT
1005
1037

PKT
1005
1037

PKT
1005 POP(1005)P6

P4

PKT
1005

PKT
1005

PKTPE1 PE5

Fig. 4: The SRP to connect CE1 and CE2 is expressed as
a label stack computed using the SR-LEA-A algorithm.

Input: Segment Routing Path (SRP)

Divide the SRP into succession of shortest paths (subpaths)

For each subpath :
1. IF size(subpath) >= 2 replace with a Node-SID
2. IF size(subpath) == 2 replace Adjacency-SID label

Output: Minimum Label Stack

Fig. 5: SR-LEA flowchart.

SR-LEA has two main steps, as shown in Fig. 5 and detailed
by the pseudocode in Algorithm 1. In the first step, the SRP is
spliced into a succession of shortest paths (subpaths), container
A holds the SRP splices, whereas the container B, will hold
the potential SRP splice. In the second each subpath composed
of three or more nodes is replaced by its tail’s end node Node-
SID, whilst if it is composed of two nodes it is replaced by the
Adj-SID between those two nodes. The best case is that the
requested SRP follows the shortest path SPF. Consequently,
SR-LEA output a label stack composed of one label: the egress
node’s Node-SID.

In order to encode the path P using SR-LEA, we fol-
low the two steps of the algorithm. First, the subpath that
compose the path P are computed and saved in the list

A: {(PE1, P2, P3), (P3, P7), (P7, P6, PE5)} . Finally each
subpath in A is replaced with the appropriate SID:

• The subpath {PE1, P2, P3} is composed of three nodes.
Therefore, it is replaced by P3’s Node-SID = 1003.

• The subpath(P3, P7) is composed of two nodes. There-
fore, it is replaced by the Adj-SID P3-P7 = 5037.

• The subpath {P7, P6, PE5} is composed of three nodes.
Therefore, it is replaced by PE5’s Node-SID = 1005.

The resulting label stack is [1003, 5037, 1005]. As shown
in Fig. 3, a packet follows the IGP shortest path to reach P3
using label 1003 (i.e., P3’s Node-SID). At P3, the Adj-SID
5037 is used to enforce the packet through the link P3-P7.
At P7, label 1005 (i.e., PE5’s Node-SID) is used to forward
the packet down the IGP shortest path to reach PE5. At PE5,
label 1005 is popped and the IP packet is forwarded to CE2.

C. SR-LEA-A

In the segment routing architecture, it is possible to advertise
an adjacency (i.e., an interface) as a global segment, rather than
advertising it as a local segment. Accordingly, the adjacency
becomes routable in the SR domain. In comparison to the
local Adj-SID, all the SR nodes forward the packet using the
IGP shortest path to reach the node that advertises the global
Adj-SID, then the node that owns the adjacency forwards the
packet to the exit interface associated with the global Adj-SID.
To take advantage of this possibility, we propose SR-LEA with
global Adj-SIDs (SR-LEA-A). When Adj-SIDs are advertised

as global segments it is the SR-LEA-A that computes the
minimum label stack.

In SR-LEA-A, we suppose that the Adj-SIDs are advertised
as global segments, the resulting label stack is either smaller
or equal to the SR-LEA’s one. Both algorithms share step 1
detailed in Algorithm 1. In SR-LEA-A, as detailed by the
pseudocode in Algorithm 2: a subpath of size > 3 followed
by one of size = 2 are encoded using one label: the global
Adj-SID between the last node in the first path and the first
node in the second one. Compared to SR-LEA, two labels are
used to encode the two subpaths.

Algorithm 2 Efficient Label Encoding algorithm with global
Adj-SIDs
STEP 1 Same as for SR-LEA
STEP 2

1: for i← 1 To Size(A) do
2: if length(A[i]) > 2 then
3: if length(A[i+ 1]) == 2 then
4: push(labelStack, GlobalAdjSID(

A[i][end], A[i+ 1][1]))
5: p+ = 2
6: continue
7: end if
8: push(labelStack,NodeSID(A[i][end]))
9: else

10: push(labelStack,AdjSID(A[i]))
11: end if
12: end for

In the example described in Fig. 4, P3 advertises
its adjacency with P7 as the global SID 1037, the
list A contains the following subpaths: {(PE1, P2, P3),
(P3, P7), (P7, P6, PE5)}. Accordingly, the two subpaths
{(PE1, P2, P3), (P3, P7)} are encoded using the global Adj-
SID P3 − P7 : 1037. Consequently, the label stack for the
path P is [1037, 1004]. At PE1 and P2, based on 1037 the
packet is forwarded down the shortest path to reach P3. At
P3, the top label 1037 is popped and the packet forwarded
through the interface that connects P3 to P7. At P7, based
on the PE5’s Node-SID (i.e., 1005) the packet is forwarded
through the shortest path to reach PE5.

V. SIMULATION RESULTS

In order to better evaluate the performance of the pro-
posed algorithms, we experimented on several SNDlib network
topologies [17] [18]. To get a representative set of paths,
for each topology, we consider a sample bandwidth demand
matrix D. As detailed in Table I, we solve the multicommodity
flow problem [19]. The result is the optimal set of paths to
satisfy the demand matrix. The paths are then encoded using
the strict Adj-SID, SR-LEA and SR-LEA-A.

The two proposed algorithms, compute the minimum label
stack to express a SRP. SR-LEA is used when the Adj-SIDs are
local segments whilst SR-LEA-A is used when they are global.

Topology V E D
Geant 22 36 431
Albilene 12 18 131
Brain 161 166 9045
Germany50 50 80 1270
Nobel-germany 17 26 248

TABLE I: V is the number of nodes. E the number of links.
D: number of demands in the demand matrix.

0

1

2

3

4

5

6

7

Strict

SR-LEA

SR-LEA-A

A
ve

ra
ge

la
b

el
 s

ta
ck

 s
iz

e

Topologies

Fig. 6: Comparison of the average label stack size generated
using a strict encoding, SR-LEA and SR-LEA-A algorithms.

The comparison is made between the strict encoding, the SR-
LEA and the SR-LEA-A algorithms. For each topology, using
the three encoding algorithms detailed previously, we compute
the average label stack size and the percentage of network
paths encoded with a label stack size ≤MSD.

Fig. 6 illustrates the per-topology average label stack size
variation depending on the topology and the encoding algo-
rithm.

• We observe that the strict encoding always produces a
large label stack. This was expected because no optimiza-
tion on the label stack size is performed, rather a one to
one mapping of the physical links to the label stack. We
note that for some paths the label stack noticeably reaches
up to 14 labels.

• SR-LEA reduces the size of the label stack by 52% to
65% compared to the strict encoding; the observed gain
varies depending on the network design and diameter.

• SR-LEA-A gives the best results. Notably, compared to
the strict encoding, the average label stack size is reduced
by 57% to 67%.

The MSD corresponds to the maximum number of labels a
router can push onto packet header, it is a local characteristic
of a router, it varies from one equipment vendor to another. In
an architecture where the path computation is delegated by the
SR node to a centralized entity such as a SDN controller or
a PCE. The node’s MSD is learned via the Path Computation
Element Protocol (PCEP) extensions for SR [8]. Hence, this
limitation is taken into consideration in the path computation
process. This limitation makes long paths in the network
unusable. Consequently, it forces the network traffic to follow
only short paths which cause inefficient traffic distribution or
worse network congestion. For this study, we fixed the MSD

Topologies

%
 P

at
h

s
≤

M
SD

0

20

40

60

80

100

120

Strict

SR-LEA

SR-LEA-A

Fig. 7: Paths expressed with a label stack size ≤ MSD
(MSD = 5).

to 5 labels, which is the value announced currently by the
major equipment vendors.

Fig. 7, illustrates the variation of the percentage of the
useable paths in each topology. With a strict encoding, the
percentage of useable paths can be very low e.g., 37% for
Germany50 topology. Using SR-LEA, increases considerably
the amount of useable paths e.g., from 37% to 97% for
Germany50 topology. However, encoding the label stack
using SR-LEA-A gives the best results, as it increases the
number of usable paths from 37% to 99%, a gain of 2% to
4% more than SR-LEA. We expect the difference to be more
considerable on topologies with bigger diameters.

We conclude that the proposed algorithms are very efficient
in reducing the label stack size, also in minimize considerably
the impact of the MSD limitation. However, both algorithms
do not completely eliminate the MSD problem, as we still have
paths that can not be expressed with a label stack smaller than
the MSD.

VI. CONCLUSION

In this work, we proposed two SR-MPLS paths label
encoding algorithms, namely SR-LEA and SR-LEA-A. Both
algorithms compute the minimum label stack to express a
segment routing path. Their performance has been evaluated
over real topologies. In addition, we prove that they are
efficient in alleviating the impact of the MSD. For future
work, a PCE implementation of the proposed algorithms is
underdevelopment. We are considering the possibility to use
the two algorithms to encode Topology Independent Loop-Free
Alternate (TI-LFA) Fast Reroute post-convergence paths.

REFERENCES

[1] C. Filsfils, S. Previdi, B. Decraene, S. Litkowski, and R. Shakir,
“Segment Routing Architecture,” Internet Engineering Task Force,
Internet-Draft draft-ietf-spring-segment-routing-09, Jul. 2016, work in
Progress. [Online]. Available: https://tools.ietf.org/html/draft-ietf-spring-
segment-routing-09

[2] C. Filsfils, N. K. Nainar, C. Pignataro, J. C. Cardona, and P. Francois,
“The segment routing architecture,” in 2015 IEEE Global Communica-
tions Conference (GLOBECOM). IEEE, 2015, pp. 1–6.

[3] S. Previdi, C. Filsfils, B. Field, I. Leung, J. Linkova, E. Aries,
T. Kosugi, E. Vyncke, and D. Lebrun, “IPv6 Segment Routing
Header (SRH),” Internet Engineering Task Force, Internet-Draft draft-
ietf-6man-segment-routing-header-01, Mar. 2016, work in Progress.
[Online]. Available: https://tools.ietf.org/html/draft-ietf-6man-segment-
routing-header-01

[4] P. Psenak, S. Previdi, C. Filsfils, W. Henderickx, J. Tantsura, H. Gredler,
and R. Shakir, “OSPF Extensions for Segment Routing,” Internet
Engineering Task Force, Internet-Draft draft-ietf-ospf-segment-routing-
extensions-08, Apr. 2016, work in Progress. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-ospf-segment-routing-extensions-08

[5] S. Previdi, C. Filsfils, A. Bashandy, S. Litkowski, J. Tantsura,
B. Decraene, and H. Gredler, “IS-IS Extensions for Segment Routing,”
Internet Engineering Task Force, Internet-Draft draft-ietf-isis-segment-
routing-extensions-06, Mar. 2016, work in Progress. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-isis-segment-routing-extensions-06

[6] S. Previdi, P. Psenak, C. Filsfils, H. Gredler, M. Chen, and
J. Tantsura, “BGP Link-State extensions for Segment Routing,”
Internet Engineering Task Force, Internet-Draft draft-gredler-
idr-bgp-ls-segment-routing-ext-01, Dec. 2015, work in Progress.
[Online]. Available: https://tools.ietf.org/html/draft-gredler-idr-bgp-ls-
segment-routing-ext-01

[7] Y. Rekhter, A. Conta, G. Fedorkow, E. Rosen, D. Farinacci, and
T. Li, “MPLS Label Stack Encoding,” RFC 3032, Mar. 2013. [Online].
Available: https://rfc-editor.org/rfc/rfc3032.txt

[8] S. Sivabalan, J. Medved, C. Filsfils, V. Lopez, J. Tantsura,
W. Henderickx, E. Crabbe, and J. Hardwick, “PCEP Extensions for
Segment Routing,” Internet Engineering Task Force, Internet-Draft draft-
ietf-pce-segment-routing-07, Mar. 2016, work in Progress. [Online].
Available: https://tools.ietf.org/html/draft-ietf-pce-segment-routing-07

[9] K. Kompella, S. Sivabalan, S. Litkowski, R. Shakir, S. Kini,
and jefftant@gmail.com, “Entropy labels for source routed tunnels
with label stacks,” Internet Engineering Task Force, Internet-
Draft draft-ietf-mpls-spring-entropy-label-03, Apr. 2016, work in
Progress. [Online]. Available: https://tools.ietf.org/html/draft-ietf-mpls-
spring-entropy-label-03

[10] A. Giorgetti, P. Castoldi, F. Cugini, J. Nijhof, F. Lazzeri, and G. Bruno,
“Path encoding in segment routing,” in 2015 IEEE Global Communica-
tions Conference (GLOBECOM). IEEE, 2015, pp. 1–6.

[11] F. Lazzeri, G. Bruno, J. Nijhof, A. Giorgetti, and P. Castoldi, “Efficient
label encoding in segment-routing enabled optical networks,” in Optical
Network Design and Modeling (ONDM), 2015 International Conference
on. IEEE, 2015, pp. 34–38.

[12] R. Geib, C. Filsfils, C. Pignataro, and N. Kumar, “A
Scalable and Topology-Aware MPLS Dataplane Monitoring System,”
Internet Engineering Task Force, Internet-Draft draft-ietf-spring-oam-
usecase-03, Apr. 2016, work in Progress. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-spring-oam-usecase-03

[13] A. Sgambelluri, A. Giorgetti, F. Cugini, G. Bruno, F. Lazzeri, and
P. Castoldi, “First demonstration of sdn-based segment routing in multi-
layer networks,” in Optical Fiber Communications Conference and
Exhibition (OFC), 2015. IEEE, 2015, pp. 1–3.

[14] L. Davoli, L. Veltri, P. L. Ventre, G. Siracusano, and S. Salsano, “Traffic
engineering with segment routing: Sdn-based architectural design and
open source implementation,” in 2015 Fourth European Workshop on
Software Defined Networks. IEEE, 2015, pp. 111–112.

[15] J. Medved, I. Minei, E. Crabbe, and R. Varga, “PCEP Extensions
for Stateful PCE,” Internet Engineering Task Force, Internet-Draft
draft-ietf-pce-stateful-pce-14, Mar. 2016, work in Progress. [Online].
Available: https://tools.ietf.org/html/draft-ietf-pce-stateful-pce-14

[16] A. Sgambelluri, F. Paolucci, A. Giorgetti, F. Cugini, and P. Castoldi,
“Sdn and pce implementations for segment routing,” in Networks and
Optical Communications-(NOC), 2015 20th European Conference on.
IEEE, 2015, pp. 1–4.

[17] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly,
“SNDlib 1.0–Survivable Network Design Library,” in Proceedings
of the 3rd International Network Optimization Conference
(INOC 2007), Spa, Belgium, April 2007, http://sndlib.zib.de,
extended version accepted in Networks, 2009. [Online]. Available:
http://www.zib.de/orlowski/Paper/OrlowskiPioroTomaszewskiWessaely2007-
SNDlib-INOC.pdf.gz

[18] ——, “SNDlib 1.0–Survivable Network Design Library,” Networks,
vol. 55, no. 3, pp. 276–286, 2010. [Online]. Available:
http://www3.interscience.wiley.com/journal/122653325/abstract

[19] M. Pióro and D. Medhi, Routing, flow, and capacity design in commu-
nication and computer networks. Elsevier, 2004.

