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Abstract

The migration of wireless networking towards the 5G era is distinguished by

the proliferation of various Radio Access Technologies (RAT). As no existing

technology can be surrogated by another one, the coexistence of today wireless

networks is the best solution at hand when dealing with the incessantly growing

user demand for bandwidth. Hence, in this heterogeneous environment, users will

be able to utilize services through diverse RATs. RAT selection is crucial and

must be designed astutely to avoid resource wastage. In this paper, we consider

the downlink of a heterogeneous network with two broadband RATs: a primary

RAT such as LTE, and a secondary RAT such as WiFi. We start by formulating

a centralized approach for the RAT selection as an optimization problem. Then,

two distributed approaches are proposed for adequate RAT selection: first, we

put forward distributed heuristic algorithms based on the peak rate perceived by

users from available RATs. Second, we devise a distributed RAT selection scheme

portrayed as a non-cooperative game with a learning-based algorithm to reach

the Nash Equilibriums of the RAT selection game. Extensive simulation results

show that the proposed distributed algorithms give efficient results compared to

the centralized optimal approach. The analysis of the simulation results enables

to define pertinent use cases that delimit the scope of the proposed optimal
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centralized and distributed approaches.

Keywords: RAT Selection; Centralized and Distributed Resource Allocation;

Heterogeneous Networks; Non-linear Optimization; Non-cooperative Game

Theory.

1. Introduction

Every year, the demand in mobile broadband communications increases spec-

tacularly. Practical solutions need to be proposed to face this imminent thousand-

fold traffic augmentation. To address this challenge, ubiquitous radio access will

be offered by forthcoming 5G heterogeneous network deployments. On the one

hand, the advent of mmWave technology and carrier aggregation mechanisms

is inevitable to support higher capacity [1]. On the other hand, improved spec-

tral efficiency and novel heterogeneous network deployments with astute resource

sharing are vital to meet the predicted traffic demands for the next decade.

For increased efficiency, heterogeneous networks will be self-organized. Opera-

tors will profit from the abundance of diverse Radio Access Technologies (RATs)

in the same operating area and devise advanced Radio Resource Management

(RRM) schemes to take advantage of the available system resources. Hence,

RATs will need to be integrated, with any combination of 3G, WiFi [8], WiMAX

[7] and LTE [2]. As highlighted by the seminal paper [3], heterogeneous networks

are undeniably presented as a major cornerstone of the upcoming 5G networks.

The authors particularly focus on the challenge of integrating different RATs.

Moreover, the Horizon 2020 [4] European framework programme for research

and innovation identifies that future networks will need to become significantly

more heterogeneous and use multiple RATs. This challenge is tackled particu-

larly by the METIS project that lays down the foundations of 5G networks [5].

In such a heterogeneous network, when a new or a handover session arrives, a

decision must be astutely made as to which technology it should be associated
Preprint submitted to Physical Communication November 23, 2015



with. This is known as RAT Selection. In such a context, a mobile user will be

able to connect concurrently to different RATs by enabling device support for

carrier aggregation.

The straightforward approach in apprehending the RAT selection issue is

to formulate the problem as centralized optimization task whose objective is to

maximize throughput or equivalently minimize delay. In order to derive the

expression of the delay, we use an analytical model whose key feature lies in

accounting for the effect of interference as well as for the physical layer and

channel characteristics in an easy and straightforward manner. On the one hand,

the model takes into consideration frequency planning and scheduling aspects;

and on the other hand, it provides tractable formulas of the end user mean delay.

While optimization models give an insight into the upper bounds of achiev-

able RAT selection gains, the implementation of these centralized optimal mech-

anisms are cost prohibitive in real systems. Indeed, RRM mechanisms studied in

the state-of-the-art build upon markedly lower complexity distributed schemes.

Consequently, the present work is threefold: the first part addresses the RAT

selection issue as a centralized optimization problem. The second part proposes

simple but cost effective and fully distributed heuristic algorithms. The third

part resorts to non-cooperative game theory to put forward a distributed algo-

rithm based on replication dynamics where each mobile user selfishly strives to

improve its own performances.

Results are validated through extensive simulations in the practical setting of

a geographical area covered by a global LTE network acting as the primary RAT

overlapping with several local WiFi hotspots acting as the secondary RAT. This

typically corresponds to a WiFi offloading scenario [6]. We begin by examining

static scenarios chosen randomly then assess the algorithms performances in a

dynamic setting.

The paper is organized as follows. Related work is presented in Section 2. The
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system model is described in Section 3 with adopted models for network structure,

traffic, perceived rates, and cost function. The optimal centralized RAT selection

scheme is formulated in Section 4 as a non linear optimization problem. The

heuristic distributed approach is explained in Section 6. Furthermore, the RAT

selection policy performances are assessed in a realistic dynamic setting. The

game theoretic distributed approach is explained in Section 7 and a realistic

distributed algorithm based on replicator dynamics is explained in 7.1 to reach the

Nash equilibriums of the RAT selection game. Finally, in Section 8, simulations

were conducted in a dynamic setting to compare all formulated approaches. We

conclude in Section 9.

2. Related Work

The need to fully profit from the large number of currently available RATs

is the main driver behind the growing relevance of heterogeneity for future 5G

networks. The subject is not only a hot topic for the scientific community but

also for the related standardization bodies that are duly specifying procedures to

support the interoperability between heterogeneous networks. In fact, the IEEE

802.21 group has defined ([10, 11]) a framework to enable seamless handovers

between RATs.

In the state-of-the-art, two approaches are proposed to tackle the RAT se-

lection problem. First, the centralized approach where the network performs

resource allocation in a way to satisfy all mobile users. Second, the distributed

approach where mobile users strive to improve their performances on their own.

2.1. Centralized approach

The centralized approach is studied in ([13]-[19]). In [13], [14], and [15],

a Semi-Markov Decision Process (SMDP) is proposed to find the optimal RAT

selection that maximizes a long-term reward function. Beside load conditions and
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user spatial distribution, the authors in [15] have also considered different service

classes. Recently, the paper in [16] proposes an optimal Joint Call Admission

Control approach for initial RAT selection for heterogeneous wireless networks

composed of two co-located networks supporting two different service classes. The

framework of SMDP is used to formulate the problem as a joint call admission

control and RAT selection problem that maximizes the system capacity while

selecting the RAT that consumes the least amount of energy. A Markov model

for users’ network selection in a heterogeneous network is introduced in [19] that

accounts for users’ mobility, the quality of service, and the price charged by the

operator for a given RAT.

Authors in [17] devise a utility-based resource management framework with

multiple client classes distinguished by means of a risk-averse utility function.

The optimization problem was not solved; instead simple heuristic algorithms

were planned to approximate the optimal solution in a narrow set environment.

In [18], various wireless networking scenarios embracing diverse technologies and

operators are modeled as an optimization problem, using a utility function, able to

modulate the weight given to multiple merit parameters (connectivity, preferred

operator, handover, link quality), which reflect the requirements of both the

network and end-users.

2.2. Distributed approach

The distributed approach is tackled in ([20]-[21]). In [20], a measurement-

based network selection technique that estimates QoS information by bootstrap

approximation is proposed. Unnecessary handovers between RATs are filtered

using Bayesian estimation and cumulative sum monitoring. In [21], a distributed

RAT selection scheme based on utility function and integer linear programming

is proposed, taking into account bandwidth, packet loss, delay and energy infor-

mation. Unfortunately, it is unrealistic to establish base requirements for every
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service and to assume that the total network bandwidth is enough to satisfy all

traffic.

In ([22]-[26]), game theory is used for the distributed RAT selection problem.

A comprehensive review of the solutions and challenges of game theory-based

network selection is provided in [27]. Players (i.e., the individual users) have ac-

tually no precise idea on the global network state and will try to reach a mutually

agreeable solution, or equivalently, a set of strategies they will unlikely want to

change. In [22], the selection between WiFi and 3G is formulated as a symmetric

non-cooperative game that reduces to a threshold policy. The work in [23] load

balances traffic between WiMAX and WiFi using replicator dynamics. In [24],

vertical hand-offs are initiated in order to maximize resources consumption while

striving to meet QoS requirement of end-users. Vertical hand-off with coalition

game can reduce the service time for hand-off calls. The conceived algorithm

in [25] enables users to single out the optimal RAT based on Bayesian Nash-

equilibrium point. The reached equilibrium reduces the hand-off delay while

maximizing the offered QoS at the lowest price. In [26], non-cooperative game is

again used to single out the best RAT. The paper shows that RAT selection games

with a single traffic class converge to Nash equilibriums, while an improvement

path can be repeated infinitely with a mixture of classes. The Pareto-efficiency

of the Nash equilibriums of the proposed games is analyzed and conditions to

attain it are derived.

2.3. Our contributions

This work starts by introducing and formulating the Radio Access Technology

(RAT) Selection issue in heterogeneous wireless networks. In this formulation,

we use a novel analytical radio model whose key feature lies in accounting for the

effect of interference as well as for the physical layer and channel characteristics

in an easy and straightforward manner. Our aim is to study the RAT selection
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problem from various perspectives that cover the state-of-the-art approaches:

• The first part in this work addresses the RAT selection as a global central-

ized non-linear optimization problem. After analyzing the properties of the

problem, we examine different algorithmic solutions based on an exhaustive

search and on a Mixed Integer Linear Program (MILP) re-formulation. We

finally introduce a new approach named enhanced search algorithm that

enables to drastically reduce the computation complexity. This approach

takes into account the aforementioned analytical interference model in order

to discretize the coverage area into zones.

• We propose and study heuristic approaches that are based on simple deci-

sions made by the users that necessitate no signaling information.

• We propose and study a game-theoretic approach that mimics the behavior

of selfish users. A fully distributed learning-based algorithm is adopted to

reach the Nash equilibriums of the RAT selection game.

The complexity analysis, the discussions, and the numerical results provided in

this work confirm that no approach prevails and a thorough study consists in

handling all facets.

3. Network Model on the Downlink

We consider the downlink of a heterogeneous network with two broadband

RATs: a primary RAT such as LTE, and a secondary RAT serviced by WiFi.

An LTE cell range is in the order of a few kilometers while the WiFi cell range

spans from a few tens to a few hundreds of meters only [29]. Hence, typically,

an LTE cell will be covered with several WiFi antennas as in Figure 1. We will

use the term BS (Base Station) to designate the serving antenna in any RAT: a

WiFi antenna of an LTE BS.
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WiFi AP

Figure 1: Heterogeneous wireless access

We assume that mobile users compare the received power levels from all WiFi

BSs and LTE BSs. Then, they are associated to the WiFi BS and to the LTE BS

that provide the highest signal strength. Users benefiting from the coverage of

both LTE and WiFi are coined hybrid and engage in the selection process. The

other mobile users profit only from the primary RAT coverage.

In what follows, we will present our model in terms of traffic and data rate.

Accordingly, we define a suitable cost function.

3.1. Network Structure

The network is set to be a two-dimensional disc of radius RNet. The index

x is used throughout the paper to designate a given RAT, x = P indexing the

primary RAT (LTE) and x = S referring to the secondary RAT (WiFi). We

consider a central cell in the network as the reference cell. Our reference cell

comprises one LTE antenna and multiple WiFi antennas. Let Bx
0 denote the

considered BS of RAT x in our reference cell. Let then {Bx
i , i = 1, .., Nx} be the

set of the Nx interfering BSs deployed for RAT x (co-channel BSs with Bx
0 ).

Let nx be the total number of users serviced by Bx
0 and nS the number of

WiFi users (nS ≤ nx). These nS users are engaged in the RAT selection and

coined hybrid users; let H = {1, ..., nS} be the set of hybrid users.

For LTE, the BSs produce a hexagonal lattice since we assume a constant
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distance dP between any two nearby BSs. This could be seen as a grid with

honeycomb shape where each BS is the center of a hexagon of side RP = dP /
√

3.

For WiFi, our model assumes a uniform distribution of BSs of coverage radius

RS (that depends on the power detection threshold of mobile users).

The main notations used in the present paper are reported in Table 1. These

notations will be used gradually in the following sections.

3.2. Radio Model

In this section, our goal is to derive the probability distribution of the Signal

to Interference plus Noise Ratio (SINR) of hybrid users in the reference cell.

The SINR depends on the user location in the cell and on its radio conditions

(described based on path loss and Rayleigh fading models). We denote by r(k)

the distance from user k to Bx
0 , while ri(k) represents the distance from interfering

Bx
i to that same user k.

The power received by user k depends on the BS emitted power and radio

channel attenuation, and varies with time due to fading. In RAT x, let P x be

the power emitted by Bx
0 . The received power is then:

Prx(k) = P x · γx(k) ·Xk, (1)

where the random variables Xk are i.i.d. and follow an exponential distribution

of parameter λ as we consider fast fading [32]. The path loss for user k, γx(k),

depends on the distance r(k) from Bx
0 and is given by:

γx(k) = Ax/r(k)β (2)

where β is the path loss exponent and Ax a constant characterizing the radio

propagation in Bx
0 . Finally, the SINR of user k in RAT x is given by:

SINRx(k) =
P x · γx(k) ·Xk

σ2 +
∑Nx

i=1 P
xγxi (k)Xi

(3)
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Notation Definition

x The index x used to designate the RAT

Bx
0 The considered BS of RAT x

nx The number of users serviced by Bx
0

Nx The number of interfering BSs (Bx
i )

H = {1, ..., nS} The set of hybrid users engaged in the RAT selection.

πj The transmit power at level j

Rx The coverage radius of Bx
0

P x The amount of power emitted by Bx
0

r(k) The distance between user k and its serving BS Bx
0

γx(k) The path loss for user k in Bx
0

γxi (k) The path loss between interference BS Bx
i and user k

σ2 The background noise

Xk The fast fading variables
(i.i.d. following an exponential distribution of parameter λ)

β The path loss exponent

Ax A constant characterizing the radio propagation in Bx
0

SINRx(k) The Signal to Interference and Noise Ratio of user k in RAT x

∆x,j The jth peak rate realized in RAT x

Mx The total number of peak rates realized in RAT x

χk,x The peak rate of user k in RAT x

Rk,x The mean rate of user k in RAT x

Tk,x The bit transfer time of user k in RAT x

Ck The cost function of user k

θk The probability that user k is associated with the secondary RAT
(or equivalently the percentage of its traffic serviced by BS

0 )

Ctot The total cost of hybrid users

Zxm Zone m in RAT x where users realize peak rate χx,m
pk,x The ratio of hybrid users in RAT x that perceive peak rate χk,x

Table 1: Notation Summary

where σ2 is the background noise. Further, γxi (k) is the path loss between Bx
i

and user k given by γxi (k) = Ax

ri(k)β
.

Hereafter, we compute the probability Sx(k, δ) that the SINR of a hybrid

user k is larger than a threshold δ as in Sx(k, δ) = P(SINRx(k) > δ). Based on

the above notations and according to a previous result obtained in [30], we have
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what follows:

Sx(k, δ) = exp
(
−δλσ2

γx(k)Px

)∏Nx

i=1
1

1+
δγx
i
(k)

γx(k)

≈ exp
(
−δλσ2

γx(k)Px

)
· exp

(
−δ
∑Nx

i=1
γxi (k)
γx(k)

)
(4)

As we can see in equation (4), the computation of the total amount of inter-

ference involves a discrete sum over all BSs in RAT x that we denote by Ix:

Ix(k) =

Nx∑
i=1

γxi (k)

γx(k)
(5)

Note that Ix(k) can only be evaluated numerically. Therefore, we have recourse to

the so-called fluid model proposed in [30] and [31] to propose a tractable formula

given by what follows:

Ix(k) =
2πκx%x

Rβ−2Net

(
(1− τk,x2−β)

2− β
+

(τk,x
−β − 1)( r(k)RNet

)2

4/β
+

(τk,x
−β−2 − 1)( r(k)RNet

)4

8/β

)
(6)

where τk,x = Rx
RNet

, %x is the density of interfering BSs in RAT x and κx is a given

constant such as: for WiFi, κS = 1; whereas for LTE, κP depends on the path

loss factor β and has a constant value for a given β; these values are obtained

numerically and given in [30]. Finally, %P = 2
3
√
3RFP (RP )2

and %S = 1
RFSπ(RS)2

where RFx is the frequency reuse factor in RAT x. For LTE, we consider full

frequency reuse (i.e., RFP = 1) [28]. For WiFi, a proper deployment typically

uses three non-overlapping independent channels (i.e., RFS = 3) [42].

3.3. Rate Model

3.3.1. Peak Rate

Modulation and coding constraints result in a discrete set of Mx peak rates

in RAT x. Let ∆x,j be the jth peak rate realized by a mobile user if its SINR

lies within the interval [δxj , δ
x
j+1[, j = 1, . . . ,Mx (by convention δMx+1 =∞). The
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peak rate of a user k, denoted by χk,x, is given by what follows:

χk,x =



0 if SINRx(k) < δx1 ,

∆x,1 if δx1 ≤ SINRx(k) < δx2 ,

...

∆x,Mx if δxMx
≤ SINRx(k) < δxMx+1 =∞.

The SINR can take all possible values due to fading, which means that the

peak rate varies for a given user in time. Hence, the probability that the SINR

of user k lies within the interval [δxj , δ
x
j+1[ is given by:

P(δj−1 < SINRx(k) < δj) = Sx(k, δj)− Sx(k, δj+1) (7)

The standardized numerical values for peak rates are displayed hereafter:

• In the primary RAT, we have χk,P ∈ {11.2, 22.4, 25.2, 33.6, 50.4, 67.2, 75.6, 100.8}

Mbits/s for LTE [2].

• In the secondary RAT, we have χk,S ∈ {6, 9, 12, 18, 24, 36, 48, 54} Mbits/s

for WiFi [8].

Hence, in the present heterogeneous network, at any time instant, each hybrid

user perceives two peak rates χP,k and χS,k provided by the two co-localized

RATs.

3.3.2. Scheduling

The aforementioned peak rates are realized by mobile users if they are alone

in the cell. In a practical setting, the actual data rates obtained are contingent

upon the scheduling scheme adopted in each RAT. The scheduling scheme must

inevitably provide fairness to serviced users. The fairness issue arises whenever a

limited amount of resources is to be shared by many users. In a wireless environ-

ment, due to random channel variations, we must distinguish between temporal
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fairness, which means that all users get the same amount of time slots, and utili-

tarian fairness, where all users get the same share of the overall system capacity,

which leads to equal rates. While these two types of fairness are equivalent in a

wire-line environment, they can be substantially different in a wireless environ-

ment. Therefore, we consider in this paper two relevant fair scheduling policies:

Fair Time Sharing which ensures temporal fairness and Fair Rate Sharing which

insures utilitarian fairness.

Fair time sharing. All active users are given the same chance to access resources.

Hence, the data rate of user k when assigned to RAT x in the reference cell is

the peak rate of user k divided by the number of users associated with the same

RAT x:

Rk,x =
χk,x∑nx

i=1 1l{user i joins RAT x}
=

χk,x
1 +

∑nx
i 6=k 1l{user i joins RAT x}

, (8)

where,

1l{user i joins RAT x} =

 1 if user i joins RAT x

0 otherwise.
(9)

Fair rate sharing. The data rates of all active users are made equal. Hence, the

data rate of user k when assigned to RAT x in the reference cell is:

Rk,x = 1/

nx∑
i=1

1l{user i joins RAT x}

χi,x
. (10)

In the primary RAT, users will get assigned different sets of subcarriers over

different time slots (called resource blocks), hence the multiple access division

is done in both frequency and time. We consider that all resource blocks are

allocated to a given user at a time and that fair time sharing scheme is applied

to service users in turns. In the secondary RAT, we consider the fair rate scheme

because it is the only possible resource sharing model that stems from the CSMA

(Carrier Sense Multiple Access) protocol adopted in WiFi. The seminal work
13



in [36] provides proof for the latter. In fact, the uplink traffic is neglected in

this paper which leads to a fair access scheme on the downlink channel in WiFi.

However, when a low rate user captures the channel, it will use it for a long time,

which penalizes high rate users and reduces the fair access policy to a case of

fair rate policy. In this context, we assume no collisions, a constant MAC frame

size and neglecting the 802.11 waiting times (i.e., DIFS, SIFS, ...) in comparison

with transmission times.

3.4. Traffic Model

We denote by θk the probability that hybrid user k is associated with the

secondary RAT or equivalently the percentage of its traffic serviced by the WiFi

BS. Hence, 1 − θk is the probability that hybrid user k is associated with the

primary RAT. We only consider elastic traffic for which TCP protocol is typically

used at the transport layer. This type of application adapts to available resources

and is delay tolerant. Moreover, a worst case scenario is chosen where each user

has persistent traffic.

3.5. Cost Function

The objective of the present traffic allocation is to set the amount of traffic

that every user should convey through each RAT so that all users are satisfied.

Satisfaction for a user is defined here as the minimization of the cost it perceives

subsequent to a given RAT selection. The cost function adopted is an image of

service time. As we consider elastic traffic, the user satisfaction increases with

the perceived throughput [37] or equivalently decreases with the service time. We

denote by Tk,x the mean amount of time necessary to send a data unit through

RAT x, given by Tk,x = E[1/Rk,x].

Thus, for the primary RAT in our reference cell (serviced by BP
0 ) where we

consider fair time sharing, we have the following mean data transfer time:

Tk,P =

∑nS
i=1,i 6=k (1− θi) + n+ 1

χk,P
(11)
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where θi = E[1l{user i joins RAT S}], and n = nP − nS is the number of mobile

users that are only covered by BP
0 .

For the secondary RAT (serviced by BS
0 ) where we consider fair rate sharing,

we have the following mean data transfer time:

Tk,S =
1

χk,S
+

nS∑
i=1,i 6=k

θi
χi,S

(12)

Therefore, the cost function of a hybrid user k, defined as its expected time

necessary to send a unit of data in this heterogeneous environment, is given by

the following:

Ck = Tk,P × (1− θk) + Tk,S × θk (13)

4. The Optimal RAT Selection Problem

In the present section, we formulate a centralized approach for the RAT selec-

tion as a global non-linear optimization and analyze its salient properties. Based

on these properties, we examine different algorithmic solutions based on an ex-

haustive search and on a Mixed Integer Linear Program (MILP) reformulation.

We finally introduce a novel enhanced search algorithm that enables to drasti-

cally reduce the computation complexity. We assume the existence of a central

entity responsible of routing the downlink traffic of each user (for instance Base

Band Units in a Cloud-RAN architecture [38]). The central entity may connect

the two RATs to a common core network or directly to the Internet.

4.1. Problem Formulation

The network assigns the traffic of each hybrid mobile user among RATs in

order to minimize the total network cost. In the following, the network cost is

computed for the reference cell, comprising primary and secondary RATs. This

cost denoted by Ctot is defined as the sum of the individual costs of hybrid users
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and given by:

Ctot(θk, k ∈ H) =

nS∑
k=1

Ck(θk) (14)

where H denotes the set of hybrid users.

This optimization problem (P) is introduced hereafter:

(P) : Minimize Ctot(θk, k ∈ H) =

nS∑
k=1

∑nS
i=1,i 6=k (1− θi) + n+ 1

χk,P
× (1− θk) + (

1

χk,S
+

nS∑
i=1,i 6=k

θi
χi,S

)× θk

(15)

Subject to: 0 ≤ θk ≤ 1, ∀k ∈ H (16)

(P) is a non-linear optimization problem that consists in minimizing the objective

function Ctot(θk, k ∈ H) over the convex polytope { 0 ≤ θk ≤ 1, k = 1, .., nS}.

The vertices of this polytope correspond to the points where θk = 0 or θk = 1 for

each k = 1, .., nS . Theorem 1 demonstrates that the optimal solution for Problem

(P) is always reached on the vertices of the polytope.

Theorem 1. An optimal solution to Problem (P) is reached on the vertices of
the convex polytope.

Proof. Suppose that an optimal solution to Problem (P) is reached for θ̂ =
(θ̂k, k ∈ H). Let us proceed by contradiction and suppose that there exists
an integer j with 1 ≤ j ≤ nS for which θ̂j /∈ {0, 1}. The function Ctot(θj) :=

Ctot(θj , θk = θ̂k, k ∈ H −{j}) is obtained by taking θk = θ̂k, k ∈ H −{j} as a lin-
ear function of variable θj . Trivially, Ctot(θj) attains an optimal value for θj = 0

or θj = 1. Therefore, θ̂j ∈ {0, 1} and our proof is completed by contradiction.

Theorem 1 implies that each hybrid user k is either assigned to the primary

RAT or to the secondary RAT. Thus, no load sharing between RATs is required

which avoids expensive repetitive transfers between RATs. In fact, the different

technologies may have different delays, packet sizes or coding systems. Hence,

reassembling messages sent via two RATs may be hazardous.
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4.2. Algorithmic Solutions

4.2.1. Exhaustive Search Algorithm

The optimal solution for Problem (P) can be directly computed by using

an exhaustive search algorithm. However, the time complexity of an exhaustive

search algorithm is exponential in the number of hybrid users nS . Indeed, Theo-

rem 1 implies that the optimal solution to Problem (P) is obtained on the vertices

of the polytope. Therefore, the objective function Ctot should be evaluated on

each of the vertices, corresponding to the points where θk = 0 or θk = 1 for each

i = 1, .., nS . The cardinality of the set of vertices is given by 2nS , hence the time

complexity for computing the minimum value of the function over this set is in

O(2nS log(2nS )), using for instance a quicksort algorithm.

4.2.2. MILP Reformulation

Problem (P) is non-linear due to the quadratic terms θk × θi in the objec-

tive function Ctot. Yet, following theorem 1, these variables can be considered

binary without affecting the optimality of the problem. Hence, the product ex-

pressions of binary variables θk × θi can be reformulated into linear expressions

and the optimization problem becomes a Mixed Integer Linear Program (MILP)

as explained hereafter.

In order to linearize our objective function, we replace the non-linear terms

by new variables and additional inequality constraints, which ensure that new

variables behave according to the one they replace. Let us start by replacing

each occurrence of θk × θi in the objective function by a new variable zki. Thus,

the reformulated objective function Ctot(θk, zki, k ∈ H, i ∈ H − {k}) is linear in

the variables θk and zki. Then, we add the following linear inequalities to the set

of constraints:

zki − θk ≤ 0, ∀k ∈ H,∀i ∈ H − {k}, (17)

zki − θi ≤ 0, ∀k ∈ H,∀i ∈ H − {k}, (18)
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θk + θi − zki ≤ 1, ∀k ∈ H,∀i ∈ H − {k}. (19)

Inequalities (17) and (18) ensure that zki is equal to zero when either θk or θi is

equal to zero, while inequalities (19) force zki to be equal to one if both θk and

θi are equal to one. Further, the bound constraints on the variables zki are given

by:

0 ≤ zki ≤ 1,∀k ∈ H,∀i ∈ H − {k}. (20)

Finally, the problem (P) is reformulated into a MILP denoted (P ′) and given by:

(P ′) : Minimize Ctot(θk, zki, k ∈ H, i ∈ H − {k})

Subject to: (17), (18), (19), (20),

θk = {0, 1}, ∀k ∈ H.

(21)

(P ′) is typically solved using a branch-and-bound approach based on linear-

programming. The idea of this approach is to solve Linear Program (LP) relax-

ations of the MILP and to look for an integer solution by branching and bounding

on the decision variables provided by the LP relaxations. Thus, in a branch-and-

bound approach the number of integer variables determines the size of the search

tree and influences the execution time of the algorithm. For large instances of the

problem, obtaining an optimal solution of problem (P ′) remains a hurdle. Thus,

in the following section, we introduce a novel approach that drastically reduces

the computation time of a solution to the RAT selection problem.

5. Cell Decomposition

In this section, we propose to discretize the coverage area into zones charac-

terized by similar radio conditions, in particular similar peak rates, as illustrated

in Figure 2. The reason behind this decomposition is to make the computation

tractable. In fact, the interference and the path-loss factor are different for every

user depending on its position in the cell. In practical network dimensioning, it is
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Figure 2: Geographical zones for primary and secondary RAT

not possible to use, for each user, exact values for these parameters but average

values among users [33]. Hence, for each RAT x, the cell will be logically divided

into Mx concentric discs of radii rxm, m = 1, ...,Mx (recall that we have Mx peak

rates in RAT x), and the area between two adjacent circles of radii rxm−1 and rxm

is called zone {Zxm,m = 1, ..,Mx}.

5.1. Average Parameters per Zone

Accordingly, we compute for any user in zone Zxm, the SINR within that zone

by replacing, in (3), γx(k) by its sample average γ̂x(Zxm):

γ̂x(Zxm) =
Ax

π(rxk)2 − π(rxk−1)
2

∫ rxk

rxk−1

2πr

rβ
dr (22)

Our target is to define the above mentioned zones in such a way that users

in RAT x, located in zone Zxm, are most likely to get peak rate χx,m (with a

high probability e.g. Pth = 0.9). Let us perform the computation necessary for

localizing users belonging to the first zone, where P(SINRx(k) ≥ δx1 ) ≥ Pth (rx0

being zero). According to (4) and (6), we get:

F (r(k)) ≤ 1

δx1
ln(

1

Pth
) (23)
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where F (r(k)) is a positive increasing function in r(k) such as:

F (r(k)) =
λσ2(β + 2)(r(k))β

2Ax · P Tx
+ %k,x

×(
(1− τk,x2−β)

β − 2
+

(τk,x
−β − 1)( r(k)RNet

)2

4/β
+

(τk,x
−β−2 − 1)( r(k)RNet

)4

8/β
)

Thus, inequality (23) yields rx1 = F−1( 1
δx1
ln( 1

Pth )). Users situated at a distance

not exceeding rx1 from their serving Bx
0 perceive the lowest peak rate χx,1 with

high probability Pth. We conclude that zone Zx1 is the disc of radius rx1 . Similarly,

we compute the radii delimiting the remaining zones.

5.2. Enhanced Search Algorithm

As shown in the previous section, a zone in RAT x is defined as the geograph-

ical area where users perceive a similar peak rate χk,x. Suitably, the number of

zones is low: each RAT x offering Mx peak rates leads to a total of MP ×MS

possible combinations of primary and secondary peak rates. In practice, as the

coverage of a WiFi BS is relatively small compared to the primary RAT coverage

[29], a hybrid user perceives a maximum of two primary peak rates. Thus, the

number of zones reduces to 2×MS which gives 16 active zones with WiFi as the

secondary RAT. This is typically the case when the coverage of a WiFi hotspot

is smaller than the difference between the radii of two successive LTE zones.

Owing to the zone discretization, we introduce an enhanced search algorithm

that computes the optimal solution of the RAT selection problem with reduced

complexity. Contrary to the exhaustive search algorithm that associates a de-

cision variable with each user, the enhanced search associates one variable with

the set of users in each zone designating the ratio of users associated with the

primary RAT. Then, the enhanced search evaluates the cost function Ctot for

each possible ratio. The output of the algorithm is the optimal ratio of users in

each zone associated with each RAT.
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Compared to the complexity of the exhaustive search in O(2nS log(2nS )), the

enhanced search complexity is in O(
∏z
i=1 (Ni + 1)), where Nz is the number of

users in zone z. Thus, the latter remains tractable for a reduced number of zones,

whereas the former has a combinatorial complexity explosion for a large number

of users. For example, if the secondary RAT has a total of 25 users equally

distributed among 5 zones, the exhaustive search algorithm needs to compare 225

values of cost function Ctot, whereas the enhanced search compares only (5 + 1)5

values.

By virtue of the complexity reduction, we adopt in the rest of this document

the enhanced search algorithm as the solution method for the centralized optimal

RAT selection problem.

6. Heuristic Distributed Approach

Although optimal, the centralized approach presented in the previous sections

can be costly and resource consuming (even for the enhanced search algorithm).

From a system design perspective, distributed mechanisms using pre-configured

and simple resource allocation rules are quite appealing. Therefore, in section 6.1,

we propose two lightweight heuristic distributed algorithms that approximate the

optimal solution. In Section 6.2, extensive simulations are conducted to compare

the two algorithms in static and dynamic scenarios.

6.1. Definition of Heuristic Algorithms

We propose two distributed heuristic algorithms for RAT selection called re-

spectively Peak Rate Based Algorithm denoted by R and Probabilistic Peak Rate

Based Algorithm denoted by PR. These heuristics were introduced in our previ-

ous work in [41]. In the present work, the performances are thoroughly assessed

in static as well as dynamic scenarios. Recall that for the optimal solution, each

user selects a single RAT. Therefore, our proposed heuristics are built in order
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to mimic such behavior: each user exploits available signaling information and

chooses the best RAT to connect to. Results show that the proposed algorithms

give efficient results (in terms of total network cost) compared to the optimal

centralized algorithm depending on the spatial users distribution. The two algo-

rithms are described hereafter. The Peak Rate Based Algorithm R, presented

in Algorithm 1, in which each hybrid user, compares the peak rates provided by

the primary and the secondary RAT. Then, the hybrid user chooses to connect

to the RAT providing the highest peak rate.

Algorithm 1 Peak Rate Based Algorithm

Require: Hybrid user k measures peak rates χk,P and χk,S
1: if χk,P > χk,S then
2: User k connects to primary RAT
3: else
4: User k connects to secondary RAT
5: end if

Compared to the first heuristic algorithm, the Probabilistic Peak Rate Based

Algorithm PR, presented in Algorithm 2, adds uncertainty to the choice made by

the hybrid user. The probability to connect to a given technology is proportional

to the peak rate perceived in it. Particularly, we draw a random uniform variable

x ∈ [0, χk,P + χk,S ] as noted in step 1 of the algorithm. Thus, the probability

that x is lower than χk,P equals
χk,P

χk,P+χk,S
, whereas the probability that x is

greater than χk,P equals
χk,S

χk,P+χk,S
. The rationale behind this choice is to enable

by simple comparisons (x greater or lower than χk,P ) to perform a random RAT

selection decision proportional to the ratio of the peak rates.

In practice, in LTE, mobile users measure the channel quality based on pilots,

i.e., Cell-Specific Reference Signals (CRS) that are spread across the whole band

independently of the individual users allocation. The peak rate can be easily

inferred from evaluated channel quality. In WiFi, the mobile users rely on the

beacon frame (sent at least every 100 ms) to evaluate their performances (through
22



Algorithm 2 Probabilistic Peak Rate Based Algorithm

Require: Hybrid user k measures peak rates χk,P and χk,S
1: User k draws uniformly a random variable x ∈ [0, χk,P + χk,S ]
2: if x < χk,P then
3: User k connects to primary RAT
4: else
5: User k connects to secondary RAT
6: end if

their received signal power level) and hence their peak rate.

6.2. Comparison of Distributed Heuristic Algorithms

In this section, we compare the distributed heuristic algorithms. We consider

15 hybrid users in the reference cell. We begin in 6.2.1 with a preliminary study

that deals with specific scenarios. We carry on with a thorough comparison

in 6.2.2 where general scenarios are analyzed. To study more thoroughly the

problem at hand, a dynamic setting is studied in 6.2.3 with users arriving to

an arbitrary zone and leaving the system after being serviced. In the following,

we resort to what we call probability vectors, a practical means to generate and

thereby study a given scenario in depth: we denote by pk,x the ratio of hybrid

users in RAT x that perceive peak rate χk,x. The probability vector is then given

by [p1,x p2,x ... pMx,x], where Mx is the number of peak rates in RAT x. Note that

the value of the peak rates in the probability vector take already into account the

interference according to the introduced radio model. Moreover, the scheduling

enables to compute the perceived rates of each user.

6.2.1. Specific Scenarios

We present below the probability vectors of three different scenarios 1, along

with the results gathered after running 30 simulations with 15 hybrid users. We

1On each boxplot, the central mark is the median, the edges of the box are the 25th and 75th

percentiles, the whiskers extend to the most extreme data points not considered outliers, and
outliers are plotted individually.
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denote by R
O the network cost ratio of the peak rate algorithm against that of the

enhanced search optimal algorithm. The network cost for each algorithm (e.g., R

or O) is given by equation (14)). Similarly, PR
O is the ratio corresponding to the

probabilistic peak rate algorithm. Finally, PR
R is used to compare the heuristic

algorithms.

• Scenario 1: Primary RAT probabilities are [0 0 0 0 0 0 0.3 0.7] and secondary

RAT probabilities are [0.7 0.25 0.05 0 0 0 0 0]. This choice implies that about

70% of the hybrid users perceive a peak rate of 6 Mbits/s from the secondary

RAT, while 70% perceive around 100 Mbits/s from the primary RAT (cf.

the peak rates given in Section 3.3). In this case, the primary technology

is dominant since most users are close to its tower, but distributed at the

frontier of the WiFi coverage, far away from its antenna. Results in Figure
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Figure 3: Specific scenario 1 for
comparison of distributed heuristics
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Figure 4: Specific scenario 2 for
comparison of distributed heuristics

3 show expectedly that the optimal solution is the best as both ratios PR
O

and R
O are greater than 1. In fact, this is always true since the optimal

solution minimizes the cost function. In addition, since PR
R is smaller than

1, we deduce that, in this case, the probabilistic peak rate algorithm is

more advantageous than the peak rate algorithm; a result that could have
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been predicted since with the R algorithm, all users are going to choose

the primary RAT making the throughput perceived by each user less than

100/15 = 6.66 Mbits/s (fair time model).

However, in this scenario, the PR algorithm will force some hybrid users

to connect to the secondary RAT, thus reaching a state of balance between

these two technologies and raising users data rates thus reducing global

cost.

• Scenario 2: Primary RAT vector probabilities is [0.7 0.3 0 0 0 0 0 0] and

secondary RAT vector probabilities is [0 0 0 0 0 0.1 0.3 0.6]. In this case,

70% of hybrid users get 11.2 Mbits/s from the primary RAT while 60% get

54 Mbits/s from the secondary RAT. The secondary technology is dominant

since most users are close to its BS, but distributed at the frontier of the

LTE cell, far away from its antenna.

Here, the secondary RAT offers higher rates and users tend to favor it over

the primary RAT especially with R. However, PR will act in the same way

as in scenario 1, forcing some hybrid users to choose the primary RAT and

reducing the global cost of the network. The results obtained in Figure 4

validate this logic.

• Scenario 3: Primary RAT probabilities [0 0.5 0.5 0 0 0 0 0] and secondary

RAT probabilities are all equal to 1/8. Users in the secondary RAT are

equally distributed on the entire coverage area. With at least 50% of hybrid

users getting greater rates from the primary RAT, we can say that both

technologies are approximately equivalent and that a state of equilibrium

is achieved. In this case, Figure 5 shows that R is superior to PR.

In brief, we give the relevant conclusions that stem from analyzing the specific

scenarios:
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Figure 5: Specific scenario 3 for comparison of distributed heuristics

• When one RAT surrogates the other in terms of peak rates, hybrid users

will largely choose the dominant RAT according to the R algorithm which

will deteriorate overall performances. In this case, the PR algorithm is

precious as it balances the load among both technologies.

• Whereas when the two RATs are equivalent in terms of peak rates, the R

algorithm is appropriate as there is no risk that hybrid users overcrowd any

preferred RAT. In this case, the randomization brought by PR algorithm

tends to temper the network performances.

6.2.2. General Scenarios

In the previous section, we studied punctual specific scenarios that gave us

insights into the performances of the R and PR algorithms respectively. What

happens then when a random scenario is at hand? And how to express such a

random scenario? To answer both questions, we need to model each scenario

taking into account the main characteristics (e.g., the peak rates perceived by

users) in order to single out the most suitable algorithm.

In order to create such representation or function, we need first to pinpoint

what defines a given scenario in terms of the technologies present in the covered

geographic area and the distribution of the users relatively to each of these tech-
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nologies. In other words, these parameters are the rate ratios
χi,S
χj,P

for i = 1, ..,MS

and j = 1, ..,MP perceived by hybrid users from both technologies and the prob-

ability vectors [p1,x p2,x ... pMx,x] introduced earlier for each RAT x. Thus, we

introduce a function deemed Q that captures the aforementioned parameters. Q

is the expected value of the rate ratios: it is computed by multiplying the joint

probability pi,S × pj,P by the corresponding rate ratios as given in the following:

Q =

MS∑
i=1

MP∑
j=1

pi,S × pj,P ×
χi,S
χj,P

(24)

In the following simulation results, our goal is to predict which heuristic algo-

rithm is the most suitable for a given random scenario. We compute the average

PR
R over 50 values for 100 users. We plot PR

R as a function of Q for a thousand

scenarios in order to observe the pattern they generate.

We consider two different distributions of users:

• A Uniform distribution where the coverage area of a WiFi BS is homoge-

neously occupied by users. For this reason, all components of the secondary

RAT probability vector are the same.

• A Cluster distribution where users are close to each other. Since hybrid

users have a tendency to gather in groups when accessing web pages, down-

loading media content or attending an e-learning course. Thus, all com-

ponents of the secondary RAT probability vector, except one, are equal to

zero.

For each of the aforementioned user distributions, we plot PR
R as a function of Q

and analyze the results obtained for 100 hybrid users.

Note that, in the uniform scenario, hybrid users uniformly span the different

available peak rates in the secondary RAT while they still perceive one or two

possible peak rates in the primary RAT. Extreme Q values correspond to the
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following: very high (low) Q values match the case where the majority of users

perceive much higher (lower) peak rates in the secondary RAT in comparison

with the primary RAT. In Figure 6, for low Q values, we notice that PR is less

costly than R because the majority of users perceive a higher rate in the primary

RAT and will all join - according to R - the primary RAT causing congestion

and overall bad performances. Whereas, the PR load balances the users between

both RATs. When the primary peak rates start decreasing in the primary RAT

in comparison with those in the secondary RAT, Q increases leading to a gradual

improvement in the performances of R until it over-tops PR. This is due to

the fact that the perceived primary peak rates take an intermediary value in

comparison with the set of secondary peak rates. After reaching a maximum

value for Q around 1, PR
R starts decreasing as the number of users having better

peak rates in the secondary RAT starts increasing. Therefore, the deterministic

algorithm R is less attractive as it leads to congestion in the secondary RAT.

In the cluster scenario in Figure 7, hybrid users perceive only one of the

available peak rates in the secondary RAT. We note that extreme Q values in the
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cluster scenario correspond to the following: very high (low) Q values match the

case where the perceived peak rate in the secondary RAT is much higher (lower)

than those perceived in the primary RAT. In general, PR is more efficient than

R except for Q values around 1 for which the deterministic R performs better. In

fact, for such cases, both RATs are equivalent in terms of peak rates and hence

the PR algorithm disturbs the natural load balancing attained through R. In

other cases including scenarios having extreme Q values, perceived peak rates in

one RAT are greater than the other and therefore PR performs better than R

that singles out the more advantageous RAT leading to congestion.

6.2.3. Dynamic Scenarios

To study in depth the problem at hand, the system is henceforth dynamic

with users arriving to an arbitrary zone and leaving the system after being ser-

viced. Now that the system is dynamic, we need to adapt the proposed existing

algorithms. For the optimal solution, we propose to apply the enhanced search

algorithm in 5.2, each time a user enters or leaves the secondary RAT. This adap-

tation may induce changes in the RAT selection process for active users which

are commonly known as vertical handovers (HO). Whereas for the distributed

heuristics, we choose to implement the RAT selection decisions only for each

incoming session. Although, this will impact the perceived performances of on-

going sessions, active users will not revise their former decisions. Hence, there

are no vertical HOs for the proposed distributed heuristics. Considered as a

costly operation that is not directly charged by the operator, it is important to

compute the number of HOs occurring at each transition for the optimal solu-

tion. In particular, a large number of HOs can hinder the benefits of an efficient

algorithm.

We consider a uniform distribution of users to compare the optimal solution

denoted O against the PR and R algorithms. The arrival of users follows a
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Poisson distribution and each hybrid user leaves the system after downloading

a file whose size follows an exponential distribution of mean 5 MBytes. Each

simulation accounts for 100,000 events (arrivals or departures). In the following,

we introduce the cumulative cost as an evaluation criterion. The cumulative cost

at time t is defined as:

Ccum(t) = Ctot(t)× It,t+1 + Ccum(t− 1),

where It,t+1 is the inter-event time. The expression of Ccum(t) takes into account

the time spent in a given network state and multiply it by the corresponding

total network cost.

In Figures 8 and 9, we display the cumulative cost and the mean number of

HO for the enhanced search algorithm as a function of arrival rate λ.
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for the enhanced search algorithm in
dynamic scenarios

We see that the optimal algorithm with the enhanced search generates the

best performances when compared with the heuristics specifically at high load.

At moderate to low load, the discrepancy between the heuristics and optimal

algorithm is fairly low. Furthermore, we notice that the maximum rate of HO
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is approximately 1 HO every 2 events which is very costly from the operator’s

point of view since a HO is an uncharged service that is hard to accomplish. This

leads us to the undeniable conclusion that there is no perfect solution but only

a compromise between the optimal solution and its heavy HO requirements, and

the suboptimal distributed heuristic algorithms and their very low complexity.

7. Game Theoretic Distributed Approach

To fully assess the relevance of our distributed heuristics in section 6, we will

compare their performances against another distributed RAT selection scheme

based on non-cooperative game theory that we proposed in [35]. Game theory is

well adapted to model the interactions between players competing selfishly for a

common resource. Initially, the game consists for each end-user in allocating the

traffic among the primary and secondary RATs in a way to minimize selfishly

its own cost. However, we showed in [35] that after convergence, each user is

connected to a single RAT which avoids costly traffic splitting between RATs.

For each state of the system, defined by the number of hybrid users nS ,

we define a multi-player non-cooperative game G between the nS hybrid mobile

users present in a geographic area covered simultaneously by the primary RAT

and secondary RAT. In this model, there is a sequence of one-stage games, each

corresponding to a given state of the system, defined by the number of hybrid

users. In [35], the game was static but we have recourse here to a realistic dynamic

setting: whenever a new hybrid mobile is admitted in the system, the game is

played again with an additional player. Mobile users are assumed to make their

decisions without knowing the decisions of each other. The formulation of this

non-cooperative game G = 〈N,S,C〉 can be described as follows:

• A finite set of players: N = (1, ..., nS).

• The space of pure strategies S formed by the Cartesian product of each set
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of pure strategies S = S1 × ... × SnS . An action of a hybrid user k is the

proportion of traffic θk sent via the secondary RAT. Hence Sk = [0, 1]. The

strategy chosen by player k is then θk while θ−k denotes the set of actions

taken by all other players. A strategy profile θ = (θ1, ..., θk, ..., θnS ) specifies

the strategies of all players.

• A set of cost functions C = (C1(θ), C2(θ), ..., CnS (θ)) that quantify players’

costs for a given strategy profile θ where Ck(θ) for k ∈ N is given by

equation (13).

Since for every hybrid user k, Ck is convex w.r.t. θk and continuous w.r.t.

θi, i 6= k, a Nash equilibrium exists [39]. Proving the existence of the Nash

Equilibrium (NE) for a non-cooperative game is paramount as we need an equi-

librium point to which selfish players are willing to adhere. However, it is far from

sufficient, as we need to compute those particular equilibrium points. Moreover,

we need to find a realistic distributed algorithm to help non-cooperative end-users

learn autonomously those NEs. All those goals were attained in [35] where two

search algorithms were proposed to characterize NEs of the RAT selection game.

However, in a real environment, the search algorithms cannot be practically

applied. On the one hand, they are time consuming and not tractable for real size

scenarios. On the other hand, they necessitate that every user knows the strategy

of all other users present in the cell. The latter property requires expensive

signaling and hinders the benefits of a distributed resource management policy.

As a consequence, we fall back to replicator dynamics algorithm proposed in [40]

to learn NEs. With a replicator dynamics based algorithm, each hybrid user

needs only to be aware of its own cost and strategy at each time iteration.

7.1. Learning NE: Replicator Dynamics

For clarity, we remind here of the replicator dynamics based algorithm mech-

anism as devised in [35]. Players have pure strategies and the devised algorithm
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will give the mixed strategies corresponding to a probability distribution over

pure strategies.

In the present context, this algorithm can be applied by considering the dis-

crete version of our problem: hybrid users have a finite set of strategies, each

strategy amounts to selecting only one RAT (the special case where θk = {0, 1}).

Therefore, the set of pure strategies of any hybrid user k in the finite game,

termed sk, is sk = {S, P} corresponding to choosing secondary or primary RAT

respectively. The hybrid user gets thereby the following cost:

ck =

 Tk,P if sk = P

Tk,S if sk = S
(25)

Thus, a mixed strategy matches our probability distribution (θk, 1− θk) on sk.

Definition 2. The game mechanic works as follows: at t = 0, we begin with
θ(0) = (θ1(0), ..., θnS (0)) any random vector of probabilities. At each iteration
t > 0:

1. Each hybrid user k selects the WiFi BS with probability θk(t) which leads
to outcome ck(t).

2. Each hybrid user k updates θk(t) as follows:

θk(t+ 1) =


θk(t) + b(1− ck(t)

cmax
)(1− θk(t))

if sk(t) = S,

θk(t)− b(1− ci(t)
cmax

)θk(t)

if sk(t) = P,

(26)

where 0 < b < 1 is a parameter that controls the convergence rate [12] and
cmax is the maximum cost perceived by any user in a given RAT.

Proposition 3. For any initial condition where ∀i ∈ N , θi 6= 0 or θi 6= 1, the
considered learning algorithm converges to a pure Nash equilibrium.

Thus, according to proposition 3 (proof of convergence is given in [35]), a

single RAT is selected similar to the proposed algorithm in Section 4 and the

devised heuristics in Section 6. Consequently, costly recurrent shifts between

RATs are eschewed.
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Figure 10: Cost as a function of arrival rate

8. Global Comparisons

In this final section, extensive simulations are conducted in a dynamic setting

to compare the heuristic algorithms R and PR, the replicator dynamics algorithm

and the optimal centralized approach O. The probability vectors are respectively

[0 0 0 0 0 0.1 0.3 0.6] in LTE and [0.7 0.3 0 0 0 0 0 0] in WiFi. The arrival of users

follows a Poisson distribution and each user leaves the system after downloading a

file whose size follows an exponential distribution of mean 5 MBytes. It is worth

mentioning that the replicator dynamics was altered to cope with a dynamic

scenario where the number of active users is variable. In fact, when convergence is

reached, the algorithm is stuck in the attained equilibrium as the equations where

θ is updated in (26) cannot change any more. Therefore, whenever an equilibrium

is attained, users are forced to slightly drive away from it (θk − ε, 1− θk + ε) and

replay the game to be able to sense any new arrival. Two versions of the modified

game are proposed: the first one, namely Replicator 1, where θ is updated every

0.1s and the second one, namely Replicator 2, where θ is updated at a much

faster pace of 1ms. Results are portrayed in Figure 10 for various arrival rates λ.

The enhanced optimal algorithm O generates clearly the best performing

state of the network when compared with both heuristics PR and R, and the
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Table 2: Relative Change in Cost

ArrivalRate PR R Replicator2

0.9 840% 25.13× 102% 173%

1.0 11.26× 102% 13.33× 105% 415%

replicator dynamics algorithm. For the game theoretic algorithm, we can see that

Replicator 2 is much more efficient than Replicator 1 as the algorithm has time to

converge thanks to the frequent strategy updates. Furthermore, Replicator 2 has

the best performance right after the optimal algorithm and succeeds in keeping

the cost low even for high arrival rates. However, this improvement comes at the

cost of signaling and convergence delay. The R and PR algorithms are one-shot

schemes that give instant results without weighing down the system with any

signaling messages and still with efficient results.

The PR algorithm has the worst performance as long as the arrival rate

remains below 0.8. Above this threshold, the system is very crowded and the R

algorithm performs very badly because all users will favor the RAT that gives

them the highest peak rate and will find themselves stuck in an overcrowded

RAT. The probabilistic decision in PR tempers this edge effect. This is further

highlighted when the system reaches the limit of stability through the relative

change in cost for the R, PR and the Replicator 2 algorithms in comparison with

the optimal approach reported in table 2. In particular, we can see that the R

algorithm has very mediocre performances.

9. Conclusion

Undeniably, ubiquitous radio access remains the essential backbone for sup-

porting the ever increasing demand for bandwidth. Operators will profit from

the abundance of diverse air interfaces in the same operating area and put for-

ward advanced RAT selection mechanisms. The stringent performance targets

and the novel flat architecture of beyond 4G networks have triggered a new trend
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in RRM favoring lightweight distributed schemes to costly centralized schemes.

Hence, users are intelligent terminals that can discover the radio environment

and connect to available RATs aiming at minimizing their own cost. In the

first part of this work, we compared the centralized optimal RAT selection policy

against two heuristic distributed RAT selection algorithms. By studying different

realistic scenarios based on users density and spatial distribution, we identified

which heuristic algorithm to favor based on the scenario at hand. In the sec-

ond part of the paper, the centralized approach is compared against distributed

game-theoretic RAT selection algorithm. In this competitive environment, re-

sorting to non-cooperative game theory is natural in order to obtain optimal

RAT selection. We characterized the Nash equilibriums of the RAT selection

game and put forward a decentralized algorithm based on replicator dynamics

to achieve those equilibriums. Although the game distributed approach delivers

more efficient results in comparison with the distributed heuristic approach, this

improvement comes at the cost of signaling burden and convergence delay. The

distributed heuristic approach is a one-shot algorithm that gives instant results

without weighing down the system with any signaling messages.
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