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Abstract—Nowadays, with the abundance of IEEE 802.11
access points (APs), a mobile user has the flexibility to choose
one of several APs, each using a separate channel. Rather than
relying on the simplistic standardized algorithm to select the AP,
it would be preferable to use optimal algorithms that reduce the
user data transfer time. In this paper, the AP selection process
is apprehended as an ordinal potential game, which is a class
of non-cooperative games known to possess at least one pure
Nash Equilibrium (PNE). We put forward a fully decentralized
algorithm based on replicator dynamics to attain those PNE.
Further, to assess the loss in efficiency of the proposed selfish
distributed algorithm, we compare its performances against a
centralized optimal approach derived by solving a mixed integer
linear program.

I. INTRODUCTION

The IEEE 802.11x protocol is currently the standard for

wireless LANs (WLANs) [1]. It has been widely deployed

in airports, coffee shops and homes. Users scan the wireless

channel in order to find the AP which shows the highest

signal strength and associate to it. User throughput in each

AP is determined by the number of other users associated

to it as well as the physical rate being used. In particular,

it has also been observed [2] that all the users connected

to the same AP receive the same throughput. Resorting to

non-cooperative game theory is quite suitable to model the

way users compete selfishly for limited resources. Devising an

optimal AP selection scheme depends on the existence of Nash

equilibria for the present game. In this paper, we prove that

the model at hand is an ordinal potential game, known to have

at least one PNE. Furthermore, we prove that an algorithm

based on replicator dynamics converges to the PNEs of our

game. Finally, to quantify the efficiency loss of the distributed

game approach, known as the price of anarchy, we compare

its performance against a centralized approach where resource

allocation is made in a way that satisfies all mobile users.

It turns out that even though the distributed game results are

sub-optimal, the acceptable discrepancy between the two sets

of results and the inherent adaptability of the decentralized

approach makes it really promising.

In [3] a study is made on fairness issues and how the

load should be balanced using fractional association in a

cooperative scenario. Usually, users have no particular incen-

tive to cooperate with each other and would be interested in

maximizing their individual payoffs. In [4], the case of non-

cooperative users who decide on the optimal frame size and

PHY rate to be used in order to maximize their individual

throughputs is studied. The users are all assumed to be in

a single cell and compete for throughput within that cell.

Another work on non-cooperative association is [5], which

provides a simulation study of the benefit of associating to

the AP that would provide the best estimated link rate. Some

results on cooperative association of users to different APs are

provided in [6].

The rest of the paper is organized as follows. The system

model and cost characterization in WiFi are given in Section

II. The radio access selection scheme is presented as a non-

cooperative ordinal potential game in Section III. The dis-

tributed learning algorithm based on replicator dynamics is

presented in Section IV. The optimal centralized approach is

given in V as well as an evaluation of the price of anarchy.

The conclusion is given in Section VI.

II. THE WLAN SYSTEM MODEL

In the WiFi standard, the set of achievable rates is not

continuous. Indeed, users transmit at different peak rates based

on the signal strength received. The algorithm that selects the

peak rate chooses a higher rate if the signal strength is good

and progressively cuts down the rate as signal strength decays.

This behavior results in a discrete set of achievable peak rates

χ1,s < χ2,s < ... < χMs,s where Ms is the maximum number

of achievable rates for AP s (see Table I).

The instantaneous rate ℜk,s(t) that user k gets when con-

nected to AP s depends on its location and varies with time

t due to fading effects (mobility is not taken into account).

Hence, we have the following:

ℜk,s(t) = yk(t) · χk,s

where yk are i.i.d. random variables (of unit mean) that

represent the impact of fast fading experienced by mobile

user k. They follow an exponential distribution as we consider

Rayleigh fading [7]. As in this work we assume stationarity,

the time index is omitted in what follows.

In this paper, the uplink traffic is neglected which leads to a

fair access scheme on the downlink channel. However, when

a low rate user captures the channel, this user will use it for

a long time, which penalizes high rate users and reduces the

fair access strategy to a case of fair rate sharing (assuming a

constant MAC frame size and neglecting the 802.11 waiting

times (i.e., DIFS, SIFS, etc.) in comparison with transmission

times). Consequently, the data rate of a WiFi user is given by:

Rs
k =

[

n
∑

i=1

1l{i in AP s}

ℜi,s

]−1

=

[

ns
∑

i=1

1

χi,s · yi

]−1
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χk,s 6 9 12 18 24 36 48 54

Table I
THE SET OF DISCRETE PEAK RATES (MBITS/S) IN 802.11G

where n is the total number of mobile users and ns is the

number of mobile users that simultaneously choose AP s.

Using the Jensen inequality, the mean data rate in AP s has

the following lower bound:

E[Rs
k] ≥

[

ns
∑

i=1

1

χi,s

]−1

(1)

In the rest of the paper, the mean data rate in AP s will

be approximated by its lower bound. Hence, using the lower

bound on the mean data rate, the mean data transfer time in

AP s for any user k is given by:

Tk,s =
1

E[Rs
k]

=

ns
∑

i=1

1

χi,s

(2)

Note that the index k can be omitted as all users have the

same data transfer time.

III. NON-COOPERATIVE GAME FOR AP SELECTION

Non-Cooperative game theory models the interactions be-

tween players competing for a common resource. Hence, it

is well adapted to radio resource management modeling. For

each state of the system, defined by the number of mobile

users n, we define a multi-player game G between those n
mobile users present in an area with m APs. In this model,

there is a sequence of one-stage games, each corresponding to

a given state of the system, defined by the number of mobile

users. Whenever a new mobile is admitted in the system,

the game is played again with an additional player. Mobile

users are assumed to make their decisions without knowing

the decisions of other users.

We present here the general framework: M = {1, ..,m} is

the set of available APs, N = {1, .., n} is the set of players.

Each user is a player that has to pick one AP among the m
available APs. The strategy of player k is denoted by xk such

that xk = s if player k chooses AP s. Hence, X = (xk)k∈N ∈
S = {1, 2, · · · ,m}N is a pure strategy profile. S is the space

of all profiles.

We will define the cost function of a user i that selected

strategy xk = s for any s ∈ S as follows:

ck(xk = s,X−k) =
∑

i:xi=s

1

χi,s

(3)

Where X−k denotes the vector of strategies played by all other

users except user k. Note that the cost function is the mean

data transfer time given in Equation (2).

A. The Nash Equilibrium

In a non-cooperative game, an efficient solution is obtained

when all players adhere to a Nash Equilibrium (NE). An NE

is a profile of strategies in which no player will profit from

deviating from its initial strategy unilaterally. Hence, it is a

strategy profile where each player’s strategy is an optimal

response to the other players’ strategies.

In general, finite games are not guaranteed to have a PNE.

Nevertheless, they possess a mixed NE where each player

has to continually change its AP selection according to a

distribution probability over the strategy set. Mixed equilibria

have practical issues. They lead to a situation where each

mobile user has to be simultaneously connected to more than

one AP and to split its traffic over those APs. Whenever a PNE

exists, an equilibrium can be reached where every mobile user

is consigned to only one AP.

B. Ordinal Potential Game

Ordinal Potential games (OPG) form a special class of

normal form games where the unilateral change of one user’s

strategy xi to x′
i results in a change of its cost function that

is paralleled by a change of a so-called potential function

φ : Sn → R as follows:

ci(xi, X−i) < ci(x
′
i, X−i) ⇔ φ(xi, X−i) < φ(x′

i, X−i)

An OPG allows for at least one PNE which avoids costly

traffic splitting between available APs.

Proposition 3.1: The game G is an ordinal potential game.

Proof: Let P(S) be the power set of S . We denote by ǫ
the following:

ǫ = min

{∣

∣

∣

∣

∣

∑

i∈X

1

χi,s

−
∑

i∈X′

1

χi,s

∣

∣

∣

∣

∣

: (s, s′) ∈ S2, (X,X ′) ∈ P2(N)

}

We will define for any s ∈ S and any i ∈ N ,

αi,s = max(1,
1

ǫ
)
χmax

χi,s

where χmax is the greatest available peak rate.

Now, we will define our potential function which maps a

profile X = (x1, x2, . . . , xn) to a real number:

φ(X) =
∑

s∈S

[

4
∑

i:xi=s
αi,s

]

(4)

Further, we will define a function f(x) such that:

f(x) = 4α+x + 4x−γ − 4x − 4x−γ+β

Where α ≥ 1, β ≥ 1, and γ such that α ≥ β − γ + 1. We

prove below that for any real x > 0, we have f(x) > 0.
f(x) = 4x−γ + 4α+x(1− 4−α − 4β−α−γ)

≥ 4x−γ + 4α+x(1− 1/4− 4β−α−γ)
≥ 4x−γ + 4α+x(1− 1/4− 1/4) > 0

The first inequality is obtained through the relation α ≥ 1.

The second inequality is deduced from the relation α ≥ β −
γ + 1.

Let X and X ′ be two profiles which only differ in the

strategy of one player z. Finally, we will prove that cz(X
′)−

cz(X) > 0 if and only if φ(X ′)− φ(X) > 0.
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We assume that cz(X
′) − cz(X) > 0. By definition of

parameter ǫ, we have cz(X
′) − cz(X) ≥ ǫ. Moreover, by

definition of parameter αi,s, we get :

αz,x′

z
+

∑

i:xi=x′

z,
i 6=z

αi,x′

z
− αz,xz

−
∑

i:xi=xz,
i 6=z

αi,xz
≥ 1 (5)

φ(X ′)− φ(X) = 4

αz,x′
z
+
∑

i:xi=x′

z,
i 6=z

αi,x′
z

+ 4

∑
i:xi=xz,

i 6=z

αi,s

−4
αz,xz+

∑
i:xi=xz,

i 6=z

αi,xz

− 4

∑
i:xi=x′

z,
i 6=z

αi,x′
z

It remains to check that φ(X ′)− φ(X) = f(x) where

• x =
∑

i:xi=x′

z,
i 6=z

αi,x′

z

• α = αz,x′

z
(by definition of αz,x′

z
, we have α > 1)

• β = αz,xz
,

• γ = x−
∑

i:xi=xz,
i 6=z

αi,s > 1

Note that from Equation (5), we have x+α ≥ x− γ+β+1.

We can apply the same result for the case where cz(X
′)−

cz(X) < 0.

IV. DISTRIBUTED LEARNING OF PNE

Implementing a practical distributed AP selection policy to

reach PNE is not straightforward and must be carried out

carefully. In this paper, we resort to replicator dynamics ([9])

to learn Nash equilibria.

1) Replicator Dynamics: A mixed strategy qk =
(qk,1, qk,2, . . . , qk,m) corresponds to a probability distribution

over pure strategies. In other words, pure strategy s is chosen

with probability qk,s ∈ [0, 1], with
∑m

s=1 qk,s = 1. Let Kk be

the simplex of mixed strategies for user k. Any pure strategy

s can be considered as a mixed strategy es, where vector es
denotes the unit probability vector with sth being a component

unity, hence a corner of Kk.

Let K =
∏n

i=1 Kk be the space of all mixed strategies. A

strategy profile Q = (q1, ..., qn) ∈ K specifies the (mixed or

pure) strategies of all players. Following classical convention,

we write Q = (qk, Q−k), where Q−k denotes the vector of

strategies played by all other players.

The general distributed algorithm is the following:

Input: q(0) = (q1(0), ..., qn(0)) any vector of probabilities.

At each round t, every user k:

• selects AP s with probability qk,s(t). This leads to an

outcome rk(s) for user k.

• Updates qk(t) as follows:

qk(t+ 1) = qk(t) + b · F b
k(rk(t), xk(t), qk(t)) (6)

In the general version of the depicted algorithm, the function

F b
k(rk(t), xk(t), qk(t)) can be very broad (some conditions are

nevertheless defined in [9]) and b is a real number smaller than

1. The cost rk(t) (obtained at step t by user k as a consequence

of the selected strategy) can be completely random. In practice,

the mobile users will rely on the beacon frame (sent at least

every 100ms) to evaluate their performances (through their

received power level) and hence their cost function.

Algorithms of this form are fully distributed as decisions

made by users are completely decentralized: at each time step,

user k only needs to know its own cost rk(t) and mixed

strategy qk. In our model, rk is equal to 1−ck,s. The function

F b
k is given by:

F b
k(rk(t), xk(t), qk(t)) = γ(rk(t)) · (1l{xk=s} − qk(t)) (7)

where γ : R → [0, 1] is some affine decreasing function. The

proof of convergence of this replicator is given in the Appendix

as well as the proof of the following proposition:

Proposition 4.1: For any initial condition where ∀k ∈ N
and ∀s ∈ M , qk,s 6= 0 or qk,s 6= 1, the considered learning

algorithm converges to a PNE.

Thus, according to Proposition 4.1, a single AP is selected

when the distributed algorithm converges.

2) Simulation Results: We run different simulations with

various numbers of users and APs. In the first set of simula-

tions, we take 4 APs and 20 users. In Figure 1, we depict the

strategy dynamics qk of two randomly selected users (users 2

and 4) as a function of the number of iterations. We can see

that the users’ strategies converge to either 0 or 1 opting for

one single AP instead of load balancing their traffic between

several APs. We recorded this behavior through the extensive

simulations we performed (further, the result of convergence

to PNE is proven in the appendix).

Figure 1. Replication Dynamics: strategy updates for 2 random users

We also notice the slow convergence of the algorithm

(approximately 9500 iterations for the present case) which

hinders the benefits of a distributed approach. However, we see

through the extensive simulations we ran that the convergence

is relatively fast at the beginning of the algorithm but it slows

down drastically half way through. At that point, the AP that

will be ultimately selected by each user is clearly designated

(we can see this behavior in Figure 1 around 4000 iterations)
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and it is useless to pursue the AP selection process. Hence,

we propose an accelerated mode of the algorithm such that

whenever for a given user the probability of selecting any AP

surpasses 0.8, convergence is assumed to be reached and the

user chooses this AP. In Figure 2, we run 25 simulations to

compare the number of iterations of the accelerated mode vs.

the normal mode for respectively 4 and 5 APs as a function

of the number of active users. We can see the tremendous

improvement in the accelerated mode for comparable perfor-

mances.

(a) 4 APs

(b) 5 APs

Figure 2. Normal Mode vs. Accelerated Mode

V. THE PRICE OF ANARCHY

In this section, we quantify the loss in efficiency suffered

when a distributed scheme is adopted rather than a centralized

optimization.

A. Optimal Centralized Approach

Unlike the distributed approach where precedence is given

to the individual user’s interests, resource allocation may be

performed in a way that favors the overall system performance.

We do so by introducing a centralized approach, where the

system assigns the traffic of each mobile user to the APs in

order to minimize the total network cost. We first introduce a

binary variable θk,s that indicates whether user k has selected

AP s or not. The cost incurred by user k for choosing AP s

proposed in (2) is modified as follows:

Tk,s =
1

χk,s

+
∑

k′∈N,k′ 6=k

θk′,s

χk′,s

.

where

θk,s =

{

1 if user k is associated to AP s,

0 otherwise.

Therefore, the individual cost of user k is given by:

Tk(θk) =
m
∑

s=1





θk,s
χk,s

+
∑

k′∈N,k′ 6=k

θk′,s · θk,s
χk′,s



 (8)

Where θk is the vector whose components are θk,s.

Our goal consists in finding the optimal user association

(designated by θk,s for each user k ∈ N and AP s ∈ M ) that

minimizes the total network cost. The latter, denoted by Ctot,

is defined as the sum of mobile users’ individual costs and is

given by
∑n

k=1 Tk(θk).

Thus, the global approach can be formulated as an opti-

mization problem (P) introduced below:

(P) : Min Ctot(θk,s, k ∈ N, s ∈ M) =

∑

s∈M,k∈N





θk,s
χk,s

+
∑

k′∈N,k′ 6=k

θk′,s · θk,s
χk′,s





(9)

Subject to:
∑

s∈M

θk,s = 1 ∀k ∈ N (10)

θk,s ∈ {0, 1} ∀(k, s) : k ∈ N, s ∈ M (11)

Constraints (10) ensure that a given user is connected to only

one AP. Constraints (11) are the integrality constraints for the

decision variables θk,s.

1) Optimal Solution: Problem (P) is a binary non-linear

optimization that consists in minimizing the objective function

(9) subject to the constraints (10) and (11). In this section, we

propose two methods to compute the optimal solution of (P),
(i) using an exhaustive search algorithm and (ii) converting

(P) into a Mixed Integer Linear Programming (MILP).

a) Exhaustive search: The exhaustive search algorithm

explores all the possible solutions to compute the minimum of

the objective function. We note that the time complexity of this

exhaustive search algorithm depends on the number of users

and the number of APs. More precisely, the objective function

should be evaluated for each value of θk,s. As θk,s = 0 or 1
for each s = 1, ...,M and k= 1, ..., N , the time complexity

for computing the minimum value of the objective function

is in O(2M ·N ). Thus, the exhaustive search is computational

intensive, and rapidly becomes intractable for large scenarios.
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b) Mixed Integer Linear Programming: In this section,

we explain how to convert our non linear optimization problem

(P) into a MILP. A MILP problem consists of a linear

objective function, a set of linear equality and inequality

constraints and a set of variables with integer restrictions.

Generally, MILP problems are solved using a branch-and-

bound approach based on linear-programming. The idea of

this approach is to solve Linear Program (LP) relaxations of

the MILP and to look for an integer solution by branching

and bounding on the decision variables provided by the LP

relaxations. Thus, in a branch-and bound approach the number

of integer variable determines the size of the search tree and

influences the running time of the algorithm. Hence, we should

try to keep the number of variables with restrictions (binary

or integer) low.

To linearize our objective function, we replace the non linear

terms by new variables and additional inequality constraints,

which ensures that new variables behave according to the non

linear terms they are replacing. Particularly, in the objective

function (9) we replace each quadratic term θk,s · θk′,s by a

new variable zk,k′,s and add the following three inequalities

to the set of constraints:

zk,k′,s − θk,s ≤ 0 ∀(k, k′, s) : s ∈ M,k 6= k′ ∈ N (12)

zk,k′,s − θk′,s ≤ 0 ∀(k, k′, s) : s ∈ M,k 6= k′ ∈ N (13)

θk,s + θk′,s − zk,k′,s ≤ 1 ∀(k, k′, s) : s ∈ M,k 6= k′ ∈ N
(14)

Inequalities (12) and (13) ensure that zk,k′,s is equal to zero

when either θk,s or θk′,s are equal to zero, while the inequal-

ities (14) force zk,k′,s to be equal to one if θk,s and θk′,s are

equal to one. In addition, we give the bound constraints for the

variables zk,k′,s which are introduced during the linearization

process:

0 ≤ zk,k′,s ≤ 1 ∀(k, k′, s) : s ∈ M,k 6= k′ ∈ N (15)

Finally, our MILP problem (P ′) is given by:

Min Ctot(θk,s, zk,k′,s) =
∑

k∈N,s∈M





θk,s
χk,s

+
∑

k′∈N,k′ 6=k

zk,k′,s

χk′,s





(16)

Subject to the constraints:(10)-(15).

B. Simulation Results

In Figure 3, we illustrate the mean time necessary to send

a data unit for all users as a function of the number of active

users present in the system for both the centralized optimal

approach and our algorithm based on replicator dynamics

using a 95 percent confidence interval. We find an expected

improvement in the optimal approach in comparison with the

decentralized approach, especially for large numbers of users.

However, the acceptable discrepancy between the two sets

of results and the low degree of system complexity of the

decentralized approach makes it an attractive solution.

Figure 3. Mean data transfer time for 4 APs

VI. CONCLUSION

Nowadays, with the abundance of diverse air interfaces in

the same operating area, advanced radio resource management

is vital to take advantage of the available system resources.

This paper focuses on such a network selection problem in the

context of IEEE 802.11 WLANs where several access points

provide connection service to users. We formulate this problem

as a non-cooperative game where each user tries to minimize

its cost function, defined as the data transfer time. We then

conduct an analysis of the formulated game and propose an

access point selection algorithm based on replicator dynamics.

The proposed algorithm, which can be implemented based on

local observation, is especially suitable in decentralized adap-

tive learning environments such as wireless access networks.

Finally, the simulation results highlight the effectiveness of

the proposed algorithm to achieve high system efficiency

compared with an optimal centralized scheme.

APPENDIX

Theorem A.1: Let G be an instance of game G. The learning

algorithm, for any initial condition in K−K∗, always weakly

converges to a Nash Equilibrium.

Proof: Let Q = (q1, q2, . . . , qn) be a mixed profile of the

game. According to Sastry et al. [12], the Linear Reward-

Inaction algorithm converges weakly towards a replication

dynamic:

dqi,s
dt

(Q) = qi,s (E[ ci |Q ]− E[ ci |qi,s = 1, Q−i ]) (17)

This equation, called the (multi-population) replicator dy-

namics, is well-known to have its limit points related to Nash

equilibria (through the so-called Folk’s theorem of evolution-

ary game theory [11]). More precisely, we have the following

theorem:

Theorem A.2: The following are true for the solutions of

Equation (17): (i) All Nash equilibria are stationary points.

(ii) All strict Nash equilibria are asymptotically stable. (iii)

All stable stationary points are Nash equilibria.

From [9], the limit for b → 0 of the dynamics of stochastic

algorithms is some Ordinary Differential Equations (ODE)

whose stable limit points, when t → ∞ (if they exist),
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can only be NEs. Hence, if there is convergence for the

ordinary differential equation, then one expects the replicator

dynamic algorithm to reach an equilibrium. Moreover, in [8],

Coucheney et al. proved that such NEs are pure.

Let us see if the continuous dynamic converges with stabil-

ity arguments. We denote by π(X|Q) the probability that all

players choose AP xi according to the mixed profile Q:

π(X|Q) =

n
∏

i=1

qi,xi
. (18)

where X = (x1, x2, . . . , xn).
We define the following function Φ : K → R

Φ(Q) =
∑

X∈Sn

π(X|Q)φ(X) (19)

Let us study the evolution of function Φ(Q) over time. We

focus on dΦ
dt
(Q). By definition, we have :

dΦ

dt
(Q) =

n
∑

i=1

∑

s∈S

∂Φ

∂qi,s

dqi,s
dt

(Q)

First, we compute ∂Φ
∂qj,s

(Q) :

∂Φ

∂qj,s
(Q) =

∑

X−j ∈ Sn−1 π(X−j |Q)φ(xj = s,X−j)

Hence, we have the following:

dΦ

dt
(Q) =

∑

i∈N

∑

s∈S

∂Φ

∂qi,s

dqi,s
dt

(Q)

=
∑

i

∑

s∈S qi,s
∂Φ
∂qi,s

(E[ ci |Q ]− E[ ci |qi,s = 1, Q−i ])

=
∑

i

∑

(k,s)∈S2

qi,kqi,s
∂Φ

∂qi,s
·

(E[ ci |qi,k = 1, Q−i ]− E[ ci |qi,s = 1, Q−i ])

=
∑

i

∑

k<s

qi,kqi,s(
∂Φ

∂qi,s
(Q)−

∂Φ

∂qi,k
(Q))·

(E[ ci |qi,k = 1, Q−i ]− E[ ci |qi,s = 1, Q−i ])

Now we will prove that ( ∂Φ
∂qi,k

(Q)− ∂Φ
∂qi,s

(Q)) has the same

sign as E[ ci |qi,k = 1, Q−i ]− E[ ci |qi,s = 1, Q−i ].

∂Φ
∂qi,k

(Q)− ∂Φ
∂qi,s

(Q) =
∑

X−j∈Sn−1 π(X−j |Q) (φ(xj = k,X−j)− φ(xj = s,X−j))

W.l.o.g., we assume that E[ ci |qi,k = 1, Q−i ]−E[ ci |qi,s =
1, Q−i ] > 0. Let ǫ′ = max(1, 1

ǫ
)χmax. We will show that

4ǫ
′
E[ Ck |qi,k=1,Q−i ] + 4ǫ

′
E[ Cs |qi,k=1,Q−i ] −

4ǫ
′
E[ Cs |qi,s=1,Q−i ] − 4ǫ

′
E[ Ck |qi,s=1,Q−i ] is positive.

Recall that in the proof of Proposition 3.1, for any positive,

fixed constants α ≥ 1, β ≥ 1, and γ such that α ≥ β− γ+1,

the function f(x) = 4α+x+4x−γ−4x−4x−γ+β in positive for

any x. Furthermore, f(x) is convex as f ′′(x) = ln(4)·f ′(x) =
(ln(4))2 · f(x) > 0 for any x.

We set x = ǫ′E[ Ck |qi,s = 1, Q−i ], γ = x−ǫ′E[ Cs |qi,s =
1, Q−i ] and α = αi,k. By definition of parameters ǫ and ǫ′, we

can check that α ≥ 1, β ≥ 1, and γ such that α ≥ β − γ +1.

Accordingly, we have 4ǫ
′
E[ Ck |qi,k=1,Q−i ] +

4ǫ
′
E[ Cs |qi,k=1,Q−i ] − 4ǫ

′
E[ Cs |qi,s=1,Q−i ] −

4ǫ
′
E[ Ck |qi,s=1,Q−i ] > 0
Since f is convex, using Jensen’s inequality, we have:

∑

X−i∈Sn−1

π(X−i|Q)(4
αi,k+

∑
j:xj=k

αj,k + 4
∑

j:xj=s
αj,s

− 4
αi,s+

∑
j:xj=s

αj,s − 4
∑

j:xj=k
αj,k) > 0

So we can conclude that ∂Φ
∂qi,k

(Q) − ∂Φ
∂qi,s

(Q) > 0, and

therefore dΦ
dt
(Q) ≤ 0.

Thus Φ is nondecreasing along the trajectories of the

replication dynamics. Thus, due to the nature of the learning

algorithm, all solutions of the ODE (17) remain in the strategy

space if initial conditions ∈ [0, 1]. From (A), we know that
dΦ(Q∗)

dt
= 0 implies that ∀i ∈ N∀s, k ∈ S:

q∗i,s = 0, or (E[ ci |qi,k = 1, Q−i ] = E[ ci |qi,s = 1, Q−i ])

Such a Q∗ is consequently a stationary point of the dynamics.

Since from Theorem A.2, all stationary points that are not

NEs are unstable, Proposition 4.1 holds.

Thus all solutions have to converge to some stationary point

corresponding to NE. We can deduce that the learning algo-

rithm, for any initial condition in K−K∗, always converges to

a NE of instance G. This concludes the proof of this theorem.
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