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1 Introduction

Mobile communication is considered as one of the building blocks of smart cities,
where citizens should be able to enjoy telecommunications services wherever they
are and whenever they want in a secure and non-costly way. This can be done by
dense deployment of broadband mobile systems such as Long Term Evolution
(LTE) and its successors. This dense deployment will lead to higher energy con-
sumption, and thus more gas emission and pollution. Therefore, it is crucial from
environmental point of view to reduce the energy consumption. In this context, the
focus of this chapter is to introduce radio resource management methods that
increase energy efficient, and thus reduce pollution and power wastage. Most of the
work that tackles the problem of energy efficiency in cellular networks considers the
case of one single cell. In this chapter, we propose a game theoretical approach for
the problem of energy efficiency in multicell LTE networks. We address the
problem of ICIC in the downlink of LTE OFDMA-based systems, where the power
level selection for frequency subcarriers is portrayed as a non-cooperative game in
the context of self-organizing networks. The existence of Nash equilibriums
(NEs) for the modeled game shows that stable power allocations can be reached by
selfish eNBs. To attain these NEs, we propose a decentralized algorithm based on
Best Response dynamics. In order to evaluate our proposal, we compare the
obtained results to an optimal global Coordinated Multi-Point (CoMP) solution
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where a central controller is the decision maker. Numerical simulations assessed the
good performance, in terms of throughput and energy efficiency, of the proposed
distributed approach in comparison with the centralized approach.

2 The Network Model

We consider an LTE network comprising a set of eNBs denoted by J. We focus on
the downlink in this chapter. The time and frequency radio resources are grouped
into time-frequency Resource Blocks (RBs). An RB is the smallest radio resource
unit that can be scheduled to a mobile user. Each RB consists of Ns OFDM symbols
in the time dimension and Nf sub-carriers in the frequency dimension (in LTE
Ns = 7 and Nf = 12 in the most common configuration). The set of RBs is denoted
by K, and the set of users is denoted by I. We consider the Single Input Single
Output (SISO) technology in this chapter and we will consider Multi Input Multi
Output (MIMO) technology in a future work. In the following, we make the fol-
lowing assumptions:

• We consider a fixed cell assignment and we don’t consider mobility in our
network model, each user typically compares the received signal power from
each eNB and chooses to connect to the eNB with the strongest signal.

• In order to evaluate the maximum system performance, we consider permanent
downlink traffic where each eNB has persistent traffic towards its users. We also
assume that all RBs are assigned on the downlink at each scheduling epoch.

• We adopt the widely used Proportional Fair (PF) scheduler for serving active
users. Symbols and variables used within this chapter are defined in Table 1.

The power consumption of eNB j 2 J is modeled as a linear function [1] of the
average transmit power per site as: pj ¼ p1j pj þ p0j : where pj and pj denote the
average consumed power by eNB j and its transmit power, respectively. The
coefficient p1j accounts for the power consumption, that scales with the transmit
power due to radio frequency amplifier and feeder losses.

Table 1 Sets, parameters and variables in the chapter

Variables Signification Variables Signification

J Set of eNBs pjk Transmit power of eNB j on RB k

I Total set of users hik Percentage of time user i is associated
with RB k

K Set of Resource
blocks

Gijk Channel power gain (user i on RB k on
eNB j)

N0 Noise power qijk SINR of user i associated eNB j served
on RB k

I(j) Set of users associated
to eNB j

ajk Interference impact on RB k of eNB
j among other eNBs

292 B. Maaz et al.



The coefficient p0j models the power consumed independently of the transmit
power due to signal processing and site cooling. The transmit power of each eNB is
allocated to resource blocks serving the users in the network. The total transmit
power of eNB j is the sum of the transmit power on each RB k 2 K : pj ¼P

k2K pjk: The total power consumed by any eNB j is given by:

Pj ¼ p1j
X
k2K

pjk þ p0j : ð1Þ

Given user i associated with eNB j ði:e: i 2 IðjÞÞ, the signal-to-interference-
plus-noise-ratio (SINR) of this user when served on RB k is given by:

qijk ¼
pjkGijk

N0 þ
P

j0 6¼j pj0kGij0k
ð2Þ

where Gijk is the path gain of user i on resource block k on eNB j (i.e. the average
path gain over the sub-carriers in the resource block), and N0 is the noise power,
which is, without loss of generality, assumed to be the same for the all users on all
resource blocks.

Assuming a proportional fairness service by each eNB on each resource block,
the system utility function is given by what follows:

UðhÞ ¼
X
j2J

X
i2IðjÞ

g IðjÞj jð Þ
IðjÞj j

X
k2K

log qijk
� �

¼
X
j2J

X
i2IðjÞ

X
k2K

g IðjÞj jð Þ
IðjÞj j log

pjkGijk

N0 þ
P

j0 6¼j pj0kGij0k

 !
:

ð3Þ

where g IðjÞj jð Þ ¼P IðjÞj j
s¼1 1=s; as we consider the PF scheduler with a fast varying

fading channel (Rayleigh fading). In the following sections we will provide solution
for the problem of maximizing the above mentioned utility function.

3 Centralized Power Control Approach

We cast hereafter the centralized power control problem:

PðpÞ : maximize
p

X
j2J

X
i2IðjÞ

X
k2K

g IðjÞj jð Þ
IðjÞj j log

pjkGijk

N0 þ
P

j0 6¼j pj0kGij0k

 !
ð4aÞ
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Subject to
X
k2K

pjk � pmaxj ; pminj � pjk; 8 k 2 K:8 j 2 J ð4bÞ

Problem (4a, b) is non-linear and apparently difficult, non-convex optimization
problem. However, it can be transformed into a convex optimization problem in the
form of geometric programming by performing a variable change p̂jk ¼ logðpjkÞ
and defining N̂0 ¼ logðN0Þ and Ĝijk ¼ logðGijkÞ. The resulting optimization prob-
lem deemed Pðp̂Þ is given by the following:

Pðp̂Þ : maximize
p

Ujðp̂Þ;with Ujðp̂Þ

¼
X
j2J

X
i2IðjÞ

X
k2K

g IðjÞj jð Þ
IðjÞj j log pjk

� �þ log Gijk
� �� log N0 þ

X
j0 6¼j

pj0kGij0k

 ! !

¼
X
j2J

X
i2IðjÞ

X
k2K

g IðjÞj jð Þ
IðjÞj j p̂jk þ bGijk � log N0 þ

X
j0 6¼j

exp log pj0kGij0k
� �� � ! !

¼
X
j2J

X
i2IðjÞ

X
k2K

g IðjÞj jð Þ
IðjÞj j p̂jk þ bGijk � log exp bN0

� �
þ
X
j0 6¼j

exp p̂j0k þ bGij0k

� � ! !
:

ð5aÞ

Subject to log
X
k2K

exp p̂jk
� � !

� log pmaxj

� �
� 0; 8 j 2 J; k 2 K: ð5bÞ

�p̂jk þ log pminj

� �
� 0; 8 j 2 J; k 2 K: ð5cÞ

Proposition 3.1 The resulting optimization problem Pðp̂Þ is convex and hence can
be efficiently solved for global optimality even with a large number of users.

Proof The first term of the objective is a linear function, thus concave (and con-
vex). The second term contains log-sum-exp expression which is convex. The
opposite of the sum of convex functions being concave, this completes the proof of
the concavity of the objective function. As for the new constraints: constraints (5b)
are convex by virtue of the properties of the log-sum-exp functions and (5c) are
linear function and hence convex.
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4 Distributed Power Control Approach

Although optimal, a central power allocation is complex and necessitates having
recourse to a central control that harvest signaling information from eNBs to
allocate power optimally. We turn here to distributed schemes to diminish com-
plexity at the cost of slow convergence time and lower performance.

Here, we propose a cooperative algorithm that makes profit from the X2 inter-
face between neighboring eNBs in LTE, Any local optimum p� of the centralized
convex problem (5a, b, c) must satisfy the KKT conditions, i.e. there exist unique
Lagrange multipliers 8 j 2 J such that: Any local optimum p� of the centralized
convex problem (5a, b, c) must satisfy the Karush-Kuhn-Tucker (KKT) conditions,
i.e. there exist unique Lagrange multipliers 8j 2 J such that:

@Ujðp̂Þ
@p̂jk

þ
X
l 6¼j

@Ulðp̂Þ
@p̂jk

¼ lj � kkj ; 8 k 2 K: ð6aÞ

lj: logðPmax
j Þ � log

X
k2K

exp p̂jk
� � ! !

¼ 0: ð6bÞ

kkj : p̂jk � logðpminj Þ
� �

¼ 0; 8 k 2 K: ð6cÞ

lj � 0 and kkj � 0; 8 k 2 K: ð6dÞ

We come back to the solution space in p instead of p̂. In particular, we have
what follows:

@UjðpÞ
@pjk

¼ @p̂jk
@pjk

@Ujðp̂Þ
@p̂jk

¼ 1
pjk

@Ujðp̂Þ
@p̂jk

:

Accordingly, we obtain the following set of equations:

pjk:
@UjðpÞ
@pjk

þ
X
l6¼j

@UlkðpÞ
@pjk

 !
¼ lj � kkj ; 8 k 2 K: ð7aÞ

lj: Pmax
j �

X
k2K

pjk

 !
¼ 0: ð7bÞ

kkj : pjk � pminj

� �
¼ 0; 8 k 2 K: ð7cÞ
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lj � 0 and kkj � 0; 8 k 2 K: ð7dÞ

Using the KKT conditions, we give a decomposition of the original problem into
Jj j subproblems. Following [2] we define the interference impact Iijk for user i as-
sociated to BS j on RB k such as:

Iijk p�j
� � ¼X

l 6¼j

plkGilk þN0; 8 i 2 IðjÞ: ð8Þ

Further, we define the derivative of Uijk ¼ g IðjÞj jð Þ
IðjÞj j log pjkGijk

N0 þ
P

j0 6¼j
pj0kGij0k

� �
relative

to the interference impact as follows:

@Uijk

@Iijk
¼ g IðjÞj jð Þ

IðjÞj j
�1
Iijk

:

Using (8), condition (7a) can be re-written as:

pjk
@Ujk

@pjk
�
X
l 6¼j

X
k2K

X
i2IðlÞ

g IðjÞj jð Þ
IðjÞj j

Gijk

Iijk

0
@

1
A ¼ lj � kkj ; 8 k 2 K; 8 j 2 J: ð9Þ

Given fixed interference and fixing the power profile of any eNB except eNB j, it
can be seen that (9) and conditions (7b–d) are the KKT conditions of the following
optimization sub-problems 8 j 2 J :

maximize
pj

Vj pj; p�j
� �

¼
X
k2K

X
i2IðjÞ

g IðjÞj jð Þ
IðjÞj j log

pjkGijk

N0 þ
P

j0 6¼j pj0kGij0k

 !
�
X
k2K

pjkajk:
ð10aÞ

Subject to :
X
k2K

pjk � pmaxj ; pminj � pjk; 8 k 2 K: ð10bÞ

where ajk is the interference impact on RB k of eNB j on other eNBs, and given by:

ajk ¼
X
l 2 J
l 6¼ j

X
i2IðlÞ

g IðjÞj jð Þ
IðjÞj j

Gijk

P
j0 2 J
j0 6¼ l

pj0kGij0k þN0

0
B@

1
CA
: ð11Þ
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However, we choose to replace ajk by �ajk ¼ ajk
Jj j, which is the mean interference

impact on RB k inflicted by eNB j on other eNBs. Hence, we formulate a new
non-cooperative game G0 ¼ J; S;V

� 	
; where:

Vj pj; p�j
� � ¼X

k2K

X
i2IðjÞ

Uijk � �ajkpjk

0
@

1
A; 8 j 2 J: ð12Þ

The first term of the new utility function
P

i2IðjÞ Uijk is a non-decreasing function
in pjk while the second term ��ajkpjk is decreasing in pjk; which permits to strike a
good balance between spectral efficiency and energy efficiency. Hence, the higher is
the mean interference harm inflected on neighboring eNBs on a given RB k, the
lower will be the chosen power amount pjk.

For every j, Vj is concave w.r.t. pj and continuous w.r.t. pl; l 6¼ j. Hence, a Nash
Equilibrium (NE) exists [3]. Furthermore, the game at hand is super-modular. In
fact, the strategy space Sj is obviously a compact convex set of ℝk, while the
objective function of any eNB j is super-modular [4]:

@Vjk

@plk@pjk

¼
X
s 2 J

s 6¼ fj; lg

X
i2IðsÞ

g IðsÞj jð Þ
Jj j IðsÞj j

GijkGilkP
j02J;j0 6¼s pj0kGij0k þN0

� �2 1� GijkpjkP
j02J;j0 6¼s pj0kGij0k þN0

� �
0
@

1
A� 0:

8 l 2 J � fjg and 8 k 2 K; as we can fairly assume with at least 6 neighboring
eNBs for any eNB s that GijkpjkP

j02J;j0 6¼s
pj0kGij0k þN0

� �\1:

As we proved that we are in presence of a super-modular game, we know that a
Best response algorithm enables attaining the NEs. The main idea behind this
algorithm is for each eNB j to iteratively solve the optimization problem in (10a, b)
given the current interference impact and power profile of the other eNBs and then
to recalculate the corresponding interference impact until convergence. Formally,
we summarize this as follows:

1. Each eNB j chooses an initial power profile pj satisfying the power constraint.
2. Using (11), each eNB j calculates the mean interference price vector �aj given the

current power profile and announces it to other eNBs.
3. At each time t, one eNB j is randomly selected to maximize its payoff function

Vj pj; p�j
� �

and update its power profile, given the other eNBs power profiles
p�j and price vectors, i.e., pjðtþ 1Þ ¼ argmaxpj2Sj Vj pj; p�jðtÞ

� �
.
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4.1 The Power Expression at Equilibrium

We begin by solving the unconstrained convex optimization problem
maxpj Vj pj; p�j

� �
: Then, to obey the bounding constraints on power levels, any

eNBs j must do locally a projection step in order to get back to the feasible region
defined by Sj. The optimal values of the unconstrained problem are either on the
boundaries of the strategy space or resulting from the following derivation
8 j 2 J; 8 k 2 K :

@Vj pj; p�j
� �
@pjk

¼ 0 ) ð13aÞ

p2jk:
X
l6¼j

X
i2IðlÞ

G2
ijkClBjl

0
@

1
Aþ pjk:

X
l 6¼j

X
i2IðlÞ

GijkAikCl 2Bjl � 1
� �0

@
1
Aþ

X
j6¼j

X
i2IðlÞ

ClA
2
ik

¼ 0

ð13bÞ

where

Cl ¼ g IðjÞj jð Þ
Jj j IðjÞj j ;Bjl ¼ g IðjÞj jð Þ

g IðjÞj jð Þ and Aik ¼
X
j0 2 J

j0 6¼ fj; lg

pj0kGij0k þN0

0
BBBB@

1
CCCCA:

Consequently, pjk is the solution of the second degree equation in (13b). After
obtaining the various spjk, the projection algorithm 1 is run by every eNB j at each
iteration as follows:
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Algorithm 1 Projection algorithm for eNB j
1: procedure POWERPROJECTION ( )
2: S(K) SORTINDECREASINGORDER(K)
3: for all do
4: if then
5:
6: end if
7: end for
8: if then

9:

10:
11:
12: for all do
13: if then
14:
15: end if
16: end for
17: end if
18: Return 
19: end procedure

5 Performance Evaluation

We consider a Bandwidth of 5 MHz with 25 RBs in a 9 hexagonal cells network,
the number of UE ranging from 4 to 14 per eNB uniformly distributed in any cell.
Further, we consider the following parameters listed in the 3GPP technical speci-
fications TS 36.942 [5]: the mean antenna gain in urban zones is 12 dBi
(900 MHz). Transmission power is 43 dBm (according to TS 36.814) which cor-
responds to 20 W (on the downlink). The eNBs have a frequency reuse of 1, with
W = 180 kHz. As for noise, we consider the following parameters: user noise
figure 7.0 dB, thermal noise −104.5 dBm which gives a receiver noise floor of
pN = − 97.5 dBm.

In this chapter, we conducted preliminary simulations in a Matlab simulator,
where various scenarios were tested to assess the performances of the power control
schemes.
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For each approach, 25 simulations were run, where in each cell a predefined
number of users is selected; users’ positions were uniformly distributed in the cells.
For each simulation instance, the same pool of RBs, users and pathloss matrix are
given for both algorithms.

In Fig. 1, we can see the similarity of power economy efficiency between the
centralized algorithm and the semi-distributed algorithm. Both power control
schemes permit a considerable power economy in comparison with the Max Power
policy, that uses full power Pj

max for each eNB, as we can see in Fig. 1 where the
power economy percentage for all eNBs vary from 55 to 65% in comparison with
the Max power policy, which is a sensible power economy.

In fact, the existence of the power cost �Pk2K pjk�ajk in the utility function (12),
diminishes the selfishness of eNBs that are tempted to transmit at full power on all
RBs.

This power economy is obtained while maintaining good performances as we
can see in Fig. 2 where the utility function in (3) is depicted as a function of the
number of users for the centralized algorithm and the semi-distributed algorithms.

In Fig. 3, we report the mean convergence time per eNBs for the
semi-distributed algorithm for various scenarios. We note that each eNBs attains in
average the NE within 19–27 iterations. At each iteration, one eNB is randomly
selected to maximize its payoff function given in (13). The iteration period coin-
cides with one TTI (Transmit Time Interval), which equals 1 ms in LTE.

We noted during the extensive simulations conducted, that the power levels
attain 90% of the values reached at convergence in less than 8 iterations. We
represented in Fig. 4 the power distribution of 25 RBs for an eNB selected ran-
domly and for which convergence time was equal to 22 iterations. Low conver-
gence time in conjunction with high performances is an undeniable asset for our
semi-distributed schemes.

The Decentralized algorithms can adapt to fast changes of network state though
it is difficult to avoid converging to local optimum. It turns out that even though the
distributed game results are sub-optimal, the low degree of system complexity and

Fig. 1 Percentage of power economy as a function of the number of users for centralized and
semi-distributed versus Max power algorithms
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the inherent adaptability make the decentralized approach promising especially for
dynamic scenarios. The fast convergence time, the near optimal results and the
lower complexity degree of the semi-distributed approach makes it a very attractive
solution.

Fig. 2 Utility function as function of the number of users for centralized and semi-distributed

Fig. 3 Total convergence time by eNBs as function of the number of users for semi-distributed
algorithm

Fig. 4 Power distribution by RBs before reaching convergence for semi-distributed algorithm
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6 Conclusion

In this chapter, the power levels are astutely set as part of the LTE Inter-cell
Interference coordination process in smart cities. We proposed a non-cooperative
game and a best response algorithm to reach the NEs of the portrayed game. This
semi-distributed algorithm astutely and efficiently set the power levels with rela-
tively low convergence time. Numerical simulations assessed the good perfor-
mances of the proposed approach in comparison with the optimal centralized
approach. More importantly, considerable power economy and signaling opti-
mization can be realized.
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