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Abstract—LoRaWAN is a media access control (MAC) protocol
for wide area networks. It is designed to allow low-powered
devices to communicate with Internet-connected applications over
long-range wireless connections. The targeted dense deployment
will inevitably cause a shortage of radio resources. Hence, au-
tonomous and lightweight radio resource management is crucial
to offer ultra-long battery lifetime for LoRa devices. One of the
most promising solutions to such a challenge is the use of artificial
intelligence. This will enable LoRa devices to use innovative
and inherently distributed learning techniques, thus freeing them
from draining their limited energy by constantly communicating
with a centralized controller.

Before proceeding with the deployment of self-managing solu-
tions on top of a LoRaWAN application, it is sensible to conduct
simulation-based studies to optimize the design of learning-
based algorithms as well as the application under consideration.
Unfortunately, a network simulator for such a context is not
fully considered or lacks real deployment parameters. In order
to address this shortcoming, we have developed an event-based
simulator for resource allocation in LoRaWAN. To demonstrate
the usefulness of our simulator, extensive simulations were
run in a realistic environment taking into account physical
phenomenon in LoRaWAN such as the capture effect and
inter-spreading factor interference. The simulation results show
that the proposed simulator provides a flexible and efficient
environment to evaluate various network design parameters and
self-management solutions as well as verify the effectiveness of
distributed reinforcement-based learning algorithms for resource
allocation problems in LoRaWAN.

Index Terms—LoRAWAN, network simulator, reinforcement
learning, discrete-event simulator.

I. INTRODUCTION

The deploying of the Internet of Things promises to provide
a low-cost, large-scale and ultra-durable connectivity for ev-
erything which can benefit from being connected. LoRa and its
network architecture LoRaWAN [1]–[3] is currently the most
promising IoT solution over the unlicensed band with a simpli-
fied connectivity procedure over long-range wireless connec-
tions. LoRaWAN has unique particularities, including chirp
spread-spectrum modulation technique, regulatory limitations
on radio duty cycle, and the use of ALOHA protocol. The
start network topology is used for transmitting data, in which
a gateway relays messages between a network server (NS)
and end-devices. The transmission between end-devices and

the gateway is possible on one of the available sub-channels
and with the one of the 6 spreading factors. A collision occurs
when two or more LoRa transmissions overlap at the receiver.
A collision is provoked by the selection of the same channel
and spreading factor (SF) by different devices, with timing
overlap [4]. In addition, even with different SFs, a collision
between signals on the same sub-channel will occur due to
the imperfect orthogonality of SFs, called inter-SF collision
[5], [6]. Conversely, if there are concurrent transmissions on
the same radio resources (the same SF and sub-channel), the
gateway is able to successfully receive one of them if its
Signal-to-Interference-and-Noise-Ratio (SINR) is higher than
a threshold value, e.g, 6 dB, for any SF. The latter is deemed
capture effect (CE) [3], [7] and will be also accounted for.

Before proceeding with the deployment of the IoT ap-
plication on top of LoRaWAN, it is sensible to conduct
simulation-based studies to evaluate the network design as
well as protocol parameters for the considered application.
Since selecting the same SF and sub-channel in LoRaWAN
is inevitable due to the shortage in radio resources, it is
necessary to evaluate the network design, under the impact of
capture effect and inter-SF collision, to minimize the number
of collisions. Therefore, a LoRaWAN network simulator must
be deployed to provide early insight into different physical
aspects that can affect network performances.

In LoRaWAN, each device must be able to operate au-
tonomously by using innovative and inherently distributed
learning techniques to select radio resources, as it is not
reasonable to assume that they can communicate frequently
with the NS, given their strict energy and capacity constraints.
Moreover, in a massive deployment, the NS will not be able to
manage this access by respecting strict deadlines. Therefore,
completely self-managed solutions to select radio resources
with real deployment parameters must be assessed through an
adequate network simulator.

In this paper, we develop a lightweight and flexible network
simulator, called LoRa-MAB, in order to investigate the per-
formance of resource allocation in LoRaWAN through simula-
tion. Furthermore, we resort to the popular EXP3 (Exponential
Weights for Exploration and Exploitation) algorithm to steer
autonomously the decision of LoRa end-devices towards the
most suitable resources (e.g. spreading factors, sub-channels).
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• LoRaWAN Simulator: we develop a flexible, open-source
simulation framework, called LoRa-MAB, in Python with
Simpy library [8]. This framework captures specific LoRa
link behavior for multiple network settings with the
impact of the capture effect and inter-SF collision. The
simulation framework can be found at https://github.com/
tuyenta/IoT-MAB.

• Distributed Learning Algorithm: we deploy a distributed
learning algorithm for radio resources selection in Lo-
RaWAN. The goal is to steer autonomously the decision
of each end-device towards the most adequate radio
resources ensuring reactivity to the possible changes that
can occur in the common resource usage.

• LoRaWAN Evaluation: we carry out a thorough evaluation
of network performances by using the proposed simulator.
We show that the distributed learning approach is much
more efficient in minimizing the number of collisions
in comparison with a uniform distribution or a trivial
random distribution over the set of resources.

The rest of the paper is organized as follows. The related
work is sketched in Section II. The simulation framework,
followed by the implementation of distributed learning solu-
tions, are presented in Section III and Section IV. Performance
of LoRaWAN network with distributed learning solutions is
evaluated in Section V by using the proposed simulator. The
conclusion and future work are presented in Section VI.

II. RELATED WORKS

The most popular simulator for LoRaWAN is LoRaSim
[4], which is a discrete-event simulator based on Python with
SimPy simulation library [8]. This simulator implements a
radio propagation model based on the well-known log-distance
path loss model. The collision between transmission packets in
LoRaWAN is then evaluated through some experiments with
given radio settings such as spreading factor (SF), bandwidth
(BW) and code rate (CR). At the end of a simulation, the
simulator reports the corresponding packet delivery ratio and
total energy consumption of the network. The LoRaSim-based
simulators extend the simulator for multiple IoT applications
by adding the application data generation model along with
data packet size [9] or for the specifications of LoRaWAN in
the United States [10]. However, such simulators are limited
due to some fixed radio settings while realistic physical
setting (such as inter-SF interference) is not considered. More
importantly, no self-managing solution is implemented.

Similar simulators for LoRaWAN are based on the NS-3
network simulator [11] or the OMNeT++ network simulator
[12]. However, distributed learning is not considered.

Recent work on distributed learning for radio resources
allocation in LoRaWAN had recourse to Multi-Armed Bandit
(MAB) problem [13], [14]. Each end-device is considered as
an intelligent agent that chooses a given SF and/or channel to
improve the success transmission rate [13] or the reliability
and energy-efficiency tradeoff [14], through an adequate re-
ward process. In [13], the authors assumed that all end-devices
use the same SF and adopted the stochastic MAB algorithm

to determine the frequency selection. However, such an as-
sumption is impractical in reality due to the mutual coupling
between multiple intelligent end-devices. The work in [14] has
presented stochastic and adversarial based distributed learning
algorithms for resource allocation in an IoT network. However,
the capture effect and inter-SF interference are overlooked.
In addition, the committed simulators, which are based on
Matlab, are not truly network simulator and maybe not able
to completely simulate the real operations of LoRaWAN.

III. THE SIMULATION FRAMEWORK

LoRaWAN [1] is the network architecture designed for
wireless connections operated on LoRa technology. It specifies
different types of devices, resources, transmission protocols,
and encryption methods to build a secure wireless network in
long-range with low-power consumption. Depending on the
geographical region, communications in LoRaWAN occur in
one of the sub-channels in the ISM band, with a bandwidth
of 125 kHz, 250 kHz or 500 kHz. Towards this end, the
Chirp Spread Spectrum (CSS) modulation has been used,
which enables signals with different spreading factors to be
distinguished and received simultaneously, even if they are
transmitted at the same time and on the same channel. Besides
selecting a spreading factor and sub-channel for packet trans-
mission, each end-device selects a transmission power level up
to 20 dBm. Further, a duty cycle restrictions of 1% or 0.1%
are imposed for preventing any end-device from sending data
too often in order to make room for the other end-devices.

A. Simulation Model
We consider a LoRaWAN-like network composed of one

or more gateways, each located at the center of a disc-
shaped network of radius R, with N end-devices uniformly
distributed. For simplicity, we assume the functions of NS
is embedded in the gateway. Thus, there are 3 components:
end-devices, propagation model and gateways. Depending on
the radio resources selection method, we separate the set of
end-devices into 2 kinds: i, the normal end-device which
selects the resources by following a uniform or a trivial
distribution, and ii), the smart end-device which selects the
resources by resorting to a learning algorithm. The model of
LoRaWAN-MAB for simulating the operation of LoRaWAN
is then presented in Figure 1 with the input parameters and
the structure of the simulator.

B. System Parameters
1) Radio Resouces:
• Spreading Factors: the spreading factor (SF) can be

selected from 7 to 12. The higher the SF, the higher the
signal-to-noise ratio, the sensitivity and range, but also
the time on air (channel occupation time).

• Channels: depend on world region, LoRa communication
can operate in the 433MHz and 868Mhz ISM frequency
bands or the 900MHz band.

• Transmission Power Level: in LoRa communication,
each end-device can adjust its transmission power form
−4dBm to 20dBm, in 1dBm step.
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Fig. 1: Simulation model of LoRaWAN network.

• Coding Rate (CR): Forward Error Correction code is
used to protect LoRa communication against interference.
CR can be set either to 4/5, 4/6, 4/7 or 4/8. A higher CR
offers more protection but increases time on air.

2) Bandwidth: LoRa communications can operate in the
bandwidth (BW) of 125kHz, 250kHz or 500kHz. Higher BW
gives a higher data rate (thus shorter time on air), but a
lower sensitivity (because of integration of additional noise).
Conversely, a lower BW gives a higher sensitivity, but a lower
data rate.

3) Packet Length: The length of the transmitted packet for
each end-device. We set the default packet length to 50 bytes.

4) Duty Cycle Restriction and Packet Generation Rate: Let
Ts be the time necessary to transmit a packet of l bytes on
spreading factor s. Then, given a duty cycle limitation of δ,
the packet generation rate for each end-device operating on
SF s, denoted by λs , must verify λs · Ts ≥ δ [1].

5) Propagation Model: We implement a radio propagation
model based on the well-known log-distance path loss model,
which is presented in [4], [15]. Using this model, the path loss
Lpl(d) that depends on the communication distance d can be
described as:

Lpl(d) = L̄pl(d0) + 10γ log
( d

d0

)
+ Xσ [dB] , (1)

where L̄pl(d0) is the mean path-loss at the reference distance
d0, γ is the path loss exponent, and Xσ ∼ N(0, σ2) is the

normal distribution that accounts for shadowing, with zero
mean and σ2 variance.

6) Sensitivity and Link Behavior: The sensitivity of a radio
receiver at room temperature is computed by what follows:

S = −174 + 10 log(BW) + NF + SNR [dB] , (2)

where the first term describes thermal noise in 1Hz of band-
width and can only be influenced by changing the temper-
ature of the receiver. BW is the receiver bandwidth. NF is
the receiver noise figure that is fixed for a given hardware
implementation. SNR is the signal-to-noise ratio required by
the underlying modulation scheme and is determined by the
spreading factor SF. The higher the SF, the higher the SNR.

A transmitted LoRa packet will be received if its power at
the receiver is higher than or equal to the receiver sensitivity,
which is given in Table I.

TABLE I: LoRa characteristics at BW = 125 kHz.

SF Bit- rate
[kbps]

Receiver
Sensitivity
[dBm] [2]

Reception
Thresh.
[dB]

Inter-SF collision
Thresh.
[dB] [5]

7 5.47 -123 -6 -7.5
8 3.13 -126 -9 -9
9 1.76 -129 -12 -13.5

10 0.98 -132 -15 -15
11 0.54 -134.5 -17.5 -18
12 0.29 -137 -20 -22.5
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Fig. 2: Link behavior and simulation process

C. Collision Behavior
Due to resource limitations, two or more LoRa transmis-

sions can overlap at the gateway. In such a case, there are
some conditions that determine whether both packets can be
successfully decoded, just one, or neither. These conditions
rely on spreading factor, channel, power, and timing [7]. First,
a collision occurs when two or more devices transmit at the
same time in the same SF and channel. Next, a timing collision
will happen if these transmissions overlap in their critical
section (i.e., the section that starts at the last 5 preamble
symbols of the packet). In addition, if there are several signals
transmitting with the same SF and on the same sub-channel
simultaneously, the NS is still able to successfully receive the
strongest signal if its SINR is higher than a threshold of 6 dB.
This phenomenon is called capture effect [3], [7].

Nevertheless, perfect orthogonality is not guaranteed, and
interference among communications using different SF must
also be accounted for [5]. In fact, the NS can successfully
receive a signal using SF s if its power is higher by a
given threshold (in Table I) than the multiplication of total
interference from signals using SF s′ , s. This phenomenon
is deemed inter-SF collision.

D. Simulation Process
The simulation process of the proposed LoRaWAN simu-

lator is shown in Figure 2. First, each end-device generates
a packet by following a random distribution, such as the
exponential distribution. The packet generation rate is chosen
to satisfy the duty cycle restriction. The generated packet

then is transmitted to the gateway by using the selected radio
resources.

After sending a packet, the end-device waits for an ac-
knowledgment (ACK) sent by the NS through the gateway
[2]. We assume that there is no collision between the ACK
and uplink packets. In fact, the ACK can be delivered on a
separate channel with a higher duty cycle. Hence, if an end-
device receives an ACK for its transmitted packet, then either
there was no collision, or the capture effect has occurred.
Conversely, when ACK is not received, either the packet was
lost due to collision with another packet transmitted with the
same SF, or due to the inter-SF collision.

Depending on the received ACK or NACK, the end-device
will update its strategy to reselect appropriate radio resources
to minimize the number of collisions.

IV. DISTRIBUTED LEARNING FOR RADIO RESOURCES
ALLOCATION IN LORAWAN

To implement the distributed learning for resource allo-
cation in LoRaWAN, each end-device is considered as an
intelligent agent which aims at minimizing the collision rate
in a distributed manner by choosing the best radio resources
Ai = {si, ci, pi} ∈ A, where ci ∈ C, si ∈ S and pi ∈ P are
the selected channel, spreading factor and transmission power.
After choosing the action ai(t) at time t, device i receives the
corresponding reward, denoted by r(t) ∈ {0, 1}, where 1 stands
for a successful transmission (ACK) and 0 represents a lost
packet (NACK). Such kind of learning can be applied though
Multi-Armed Bandit (MAB) problem [16] that only makes
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use of local information available at the LoRaWAN end-device
level. The result of the learning algorithm, for each device, will
be a set of sub-channels, spreading factors and transmission
power levels that suffer the least from collisions. To reduce the
resource occupation of the neighboring devices, each device
follows a set of rules that steers its decision and allows
it to make a balance between (i) Exploiting the cumulated
knowledge by choosing the most appropriate resources (s, c, p)
and transmitting on them, and (ii) Exploring other resources
that could be interesting to exploit.

A. The EXP3 algorithm

We resort to the popular EXP3 algorithm [17], [18] to
address the distributed resource allocation problem. The goal is
to steer the decision of each device i to choose autonomously
the most appropriate (ci, si, pi) with minimum collision rate
while ensuring reactivity to the possible changes that can occur
in the common resource usage.

Let a(t) be the chosen action at time t, the latter gives a
reward ra(t). At each iteration t (at packet arrival), any device
i selects a strategy with distribution pia(t) over A. The goal of
any device i is to update pia(t) in order to get the largest reward
at horizon T in comparison with the best fixed strategy. We
initialize the algorithm with the uniform distribution pis(0) =
1
A , where A is the cardinal of strategy A.

The EXP3 algorithm for spreading factor selection in Lo-
RaWAN is then presented in Algorithm 1. Note that in case
of packet loss, rs(t) = 0 and no update will be operated on
the distribution strategy, and hence no learning either.

V. EXPERIMENTAL EVALUATION

We use LoRa-MAB simulator to investigate the performance
of LoRaWAN deployment and the distributed learning solution
for resource selection. To analyze the network performance,
we use two evaluation metrics: i, the successful transmission
rate, i.e., the rate of successfully received packets, and ii,
the average energy consumption per successfully transmitted
packet per end-device.

We evaluate the performance of LoRaWAN by using a
simple setup where N = 100 end-devices transmit packets
to one gateway. The configuration of the network is shown in
Figure 3.

We consider three experiments:
• Experiment 1: each end-device can select one of 6

possible SFs from 7 to 12 with one sub-channel and the
transmission power of 14 dBm.

• Experiment 2: each end-device can select one of 6
possible SFs from 7 to 12 with one of three sub-channels
and the transmission power of 14 dBm.

• Experiment 3: each end-device can select one of 6
possible SFs from 7 to 12 with one sub-channel and the
transmission power of {8, 11, 14} dBm.

For each experiment, the time horizon for simulation is T =
107. The 1% LoRaWAN duty cycle limitation [1] is respected
by setting the packet generation rate of each end-device to
λ = 15 packet/hour and the packet length l = 50 bytes. The

Initialization:
• Let a = Aj ∈ A be the strategy chosen by device j.
• Set the initial weights ω j

a(0) = 1, ∀a ∈ A, ∀ j ∈ N and
the uniform distribution of strategies per device.

• Set the learning rate γ = min
{
1,

√
K log(K)
(e−1)T

}
where

e ≈ 2.71828 . . . is the base of the natural logarithm.
for t = 1 to T do

initialization ;
foreach end-device j do

At time t, draw strategy a ∈ A according to
the distribution pj

a(t) ;
if Transmit then

Receive reward

r j
a(t) =

{
1 if ACK is received,
0 otherwise.

Update weights and distribution of
available strategies:

ω
j
a(t + 1) =ω j

a(t) exp
( γr j

a(t)

K · pj
a(t)

)
pj
a(t + 1) =(1 − γ)

ω
j
a(t + 1)∑K

a=1 ω
j
a(t + 1)

+
γ

K

end
end

end
Algorithm 1: EXP3 algorithm for fully distributed SF
allocation in LoRa network

Fig. 3: Network configuration

packet is generated through an exponential distribution. End-
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TABLE II: Parameters for performance analysis

Parameters Values

Aera Disc of radius 4.5 km
Packet length 50 bytes
Bandwidth (BW) 125 kHz
Code rate 4/5
Frequency set 868100 Hz
Capture Effect Threshold 6 dB
Inter-SF Collision Threshold Table I
Transmission Power 14 dB

0 200 400 600 800 1000
Horizon Time (kHours)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc
es
sf
ul
 T
ra
ns
m
iss

io
n 
Ra

te

0%, UNIFORM, Inter-SF
0%, UNIFORM, w/o Inter-SF
0%, RANDOM, Inter-SF
0%, RANDOM, w/o Inter-SF

50%, UNIFORM, Inter-SF
50%, UNIFORM, w/o Inter-SF
50%, RANDOM, Inter-SF

50%, RANDOM, w/o Inter-SF
100%, Inter-SF
100%, w/o Inter-SF

Fig. 4: Experiment 1: Successful transmission rate
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Fig. 5: Experiment 1: Average energy consumption per a
successful transmit packet per device

devices are located in a circle with radius r = 4.5km through a
uniform distribution. In our simulations, we consider the log-
distance path loss model with flat fading, where the reference
distance is d0 = 40m, the path loss at the reference distance
is PL0 = 107.41 dB, and the path loss exponent is γ = 2.08.
The other simulation parameters are presented in Table II.

We will evaluate the EXP3 performances in a real setting
that accounts for both the capture effect and the inter-SF
collision. Further, to fully assess the reinforcement learning
based algorithm, we will compare the EXP3 against simple
mechanisms where each device selects its action over the set
of actions according to i, the uniform distribution and ii), a
Gaussian distribution.

1) Experiment 1: Figure 4 shows the successful transmis-
sion rate of LoRaWAN. We can see clearly that the successful
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Fig. 6: Experiment 2: Successful transmission rate
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Fig. 7: Experiment 2: Average energy consumption per suc-
cessful transmit packet per device

transmission rate of the system with distributed learning is
significantly higher that that of the uniform SF selection and
random SF selection. In addition, the larger the number of
intelligent end-devices using distributed learning, the higher
the packet reception rate.

Figure 5 shows the network average energy consumption.
Interestingly, the larger the number of intelligent end-devices
using distributed learning, the lower the energy consumption.
Hence, intelligent ressource allocation improves both network
performances and energy efficiency.

2) Experiment 2: Similar to Experiment 1, in Experiment
2, the successful transmission rate of the network with dis-
tributed learning is significantly increased compared to the
uniform or random SF selections (Figure 6). Consequently,
the average network energy consumption is significantly re-
duced compared to the uniform and random SF selections.
Moreover, Figure 7 shows the average energy consumption in
the case where 100% of end-devices use the EXP3 algorithm
in Experiment 2 is smaller than that in Experiment 1 since the
successful transmission rate in Experiment 2 is higher (0.96
v.s. 0.845).

3) Experiment 3: Figure 8 and 9 show the successful
transmission rate and energy consumption in LoRaWAN for
Experiment 3 with 3 power levels. Similar to the previous
experiments, the successful transmission rate with distributed
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Fig. 8: Experiment 3: Successful transmission rate.
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Fig. 9: Experiment 3: Average energy consumption per a
successful transmit packet per device.

learning is significantly increased while the average power
consumption is significantly decreased compared to the uni-
form or random SF selections.

Figure 10 then compares the successful transmission rate
and the corresponding average power consumption of Exper-
iment 1 and Experiment 3. We observe that the successful
transmission rates in both experiments are close together.
Conversely, the average energy consumption in Experiment
3 was lower than 0.006 J per successfully transmitted packet
per end-device compared with that realized in Experiment 1.
Such a value is small for one packet per end-device, however,
it is a huge value for the transmission process of a dense IoT
network. It means that by using distributed learning algorithm
for the radio resource selection with multiple power levels,
we can reduce the total energy consumption of the network,
hence increase sensibly the lifetime of LoRaWAN.

VI. CONCLUSION

In this paper, we presented our devised discrete event sim-
ulator for performance evaluation of LoRaWAN in a realistic
setting with the use of distributed learning for astute radio
allocation. This simulator permits testing and evaluating dif-
ferent network design parameters and self-managing solutions
for savvy radio resource allocation. The class-based simulator
code is open source, making it easier for the scientific com-
munity to modify, adapt, and improve the simulator.
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Fig. 10: Comparison of the performance of the network in
experiment 1 and experiment 3.

We have shown that the distributed learning algorithm can
significantly improve the performance of LoRaWAN in terms
of successful packet ratio and energy consumption. However,
convergence times are long, in the order of 200 kHours for the
EXP3 algorithm. Therefore, in future work, we need to address
the convergence time issue by using more computationally
efficient distributed learning algorithms.

Furthermore, the location of each end-device can be used to
select the most appropriate spreading factor which is distance
related. Such information can constitute a warm start in EXP3
which can sensibly accelerate the learning process. Finally,
the role of the gateway in the learning process will also be
investigated. The gateway can act as an expert by advising
adequatly the end-devices to improve the resource selection
process.
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